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4.1.4 Mixed Linear Effects Models

A fixed general mean 𝜇 or a fixed intercept term 𝑏0 and random residual term𝑒 occur in almost all models that were presented so far. Apart from these, all
other effects were either all fixed or random1. We now consider models where
some effects (other than 𝜇 and 𝑒) are fixed and some are random. Such models
are called mixed linear effects models2.
An example dataset which could be analysed with a mixed linear effects model
would be, if we would add to each animal in our reference dataset on body
weight, breast circumference and breed also the sire of each animal. If some
of these animals would share the same sire and hence would be half sibs, the
dataset would again as already seen in the repeated observations data, a specific
variance structure. This is due to the fact that body weights from half sibs would
be expected to be more similar than observations from unrelated animals.

Table 4.5: Body Weight, Breast Circumference, Breed and Sire of
Beef Cattle Animals

Animal Body Weight Breast Circumference Breed Sire
1 471 176 Angus S1
2 463 177 Angus S1
3 481 178 Simmental S3
4 470 179 Angus S2
5 496 179 Simmental S3
6 491 180 Simmental S4
7 518 181 Limousin S5
8 511 182 Limousin S5
9 510 183 Limousin S6

10 541 184 Limousin S6

When fitting a mixed linear effects model to a dataset as shown in Table 4.5, the
question is which effects should be taken as fixed and which should be considered
to be random. As already mentioned in this case, Breast Circumference and
Breed would be modelled as fixed effects and Sire would be modelled as a
random effect. In general, there are not strict rules that would tell us which
effects should be modelled as fixed effects an which ones should be considered as
random. In our dataset we can certainly say that for Breast Circumference
and Breed we are interested in the effect sizes of the values that are observed
in the given datasets. In contrasts to that, we can say that the included sires

1Except for a small introduction into repeated measures models, we have not really look
at random models in great detail. But they are not of great importance to the treatment of
mixed models.

2Sometimes these models are just called mixed models. We are using these terms inter-
changably
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are a random sample of a larger population of sires. Furthermore, the primary
interest in the sire effects are in the imposed covariance structure of the data
due to the sire effects. In the case where the primary interest is in the variance
imposed by a certain effect, then the respective effect has to be modelled as a
random effect.
The general mixed effects model can be written as

y = Xb + Zu + e (4.9)

where y is the vector of observations, b is the vector of fixed effects, u is the
vector of random effects, X and Z are incidence matrices and e is the vector of
random residuals. The random effects are assumed to have expected values of
zero and given specific variance-covariance matrices. Hence we can write

𝐸 ⎡⎢⎣ y
u
e

⎤⎥⎦ = ⎡⎢⎣ Xb
0
0

⎤⎥⎦ (4.10)

The variance-covariance matrices are specified as

𝑣𝑎𝑟 ⎡⎢⎣ y
u
e

⎤⎥⎦ = ⎡⎢⎣ ZDZT + R ZD R
DZT D 0

R 0 R
⎤⎥⎦ (4.11)

with 𝑣𝑎𝑟(u) = 𝐸(uuT) = D and 𝑣𝑎𝑟(e) = 𝐸(eeT) = 𝑅.
Assuming V is not singular, the normal equations stemming from the general-
ized least squares are

X𝑇 V−1Xb0 = X𝑇 V−1y (4.12)

with a solution

b0 = (X𝑇 V−1X)−X𝑇 V−1y (4.13)

From that solution, we can get estimates of estimable functions for the fixed
effects as previously discussed for fixed models.
For the random effects u, the conditional expectation of u given the observations
y are of particular interest as estimators. Assuming multivariate normality for
u and e, we can write

û = 𝐸(u|y) = 𝐸(u) + 𝑐𝑜𝑣(u, y𝑇 )(𝑣𝑎𝑟(y))−1(y − 𝐸(y))= DZ𝑇 V−1(y − Xb) (4.14)
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Both terms, the solution for b0 and the estimate û depend on the inverse ma-
trix V−1 which can be extremely large and difficult to compute. In different
publications, the research group of Charles Henderson has shown that solving
the following system of equations leads to the same estimates for both the fixed
and the random effects. This system of equations is called Mixed Model
Equations and is shown below.

[ X𝑇 R−1X X𝑇 R−1Z
Z𝑇 R−1X Z𝑇 R−1Z + D−1 ] [ b̂

û ] = [ X𝑇 R−1y
Z𝑇 R−1y ] (4.15)

4.2 Pedigree BLUP

The linear mixed effects models as shown above can be applied to datasets in
livestock breeding. In such a model, the response variable 𝑦 corresponds to
measurements or observations of phenotypic traits. The vector of fixed effects𝑏 contains all information about the known environment such as Breed, Herd,
Season, Age and possibly other predictors that have an influence on the re-
sponse. The random effects 𝑢 contain the breeding values of animals of interest
in our livestock breeding population. Once all the informations of the data
are collected, it can be transfered into model components. The model compo-
nents are then used to construct the mixed model equations. Solutions to these
equations provide estimates of fixed effects and predictions of breeding values.
Properties of the predicted breeding values can be summarized as

• Best: the predicted breeding values have minimum prediction error vari-
ance

• Linear: the predicted breeding values are linear functions of the data
• Unbiased: the expected value of the predicted breeding values is equal to

the expected value of the true breeding value
• Prediction: because breeding values cannot be observed, the results are

called predictions.

The above listed properties are often abbreviated as BLUP.

The application of linear mixed effects models to livestock breeding datasets
can be done in two different ways.

1. Sire model: only sires in the dataset get breeding values
2. Animal model: all animals in a datasets (also parents without observa-

tions) get breeding values
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4.2.1 Sire Model

In a sire model the vector u of random effects contains all sires in the dataset.
For the example data shown in Table 4.5, this corresponds to

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆1𝑆1𝑆3𝑆2𝑆3𝑆4𝑆5𝑆5𝑆6𝑆6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Because the sire breeding values (u) are random effects, we also have to specify
the expected value and the variance-covariance matrix of u. Because breeding
values are defined as deviations, the expected values of the sire breeding values
are zero. Hence

𝐸(u) = 0 (4.16)𝑣𝑎𝑟(u) = D (4.17)

with D beeing the variance-covariance matrix between the sire breeding values.
If the sires are not related, then D = 𝜎2𝑠 𝐼 where 𝜎2𝑠 is a sire variance component.
If the sires are related then D = 𝜎2𝑠 A𝑠 where A𝑠 is the sire relationship matrix
containing elements of probabilities of sharing allels based on identity by descent
between related sires as off-diagonal elements. The diagonal elements of A𝑠 are
all one.
For the moment, we assume that the variance component such as 𝜎2𝑠 are all
given. In reality, such components would also need to be estimated from the
data. The discussion on how to estimate variance components from the data is
deferred to a later chapter.

4.2.2 Animal Model

The major difference between the sire model and the animal model is that in
the animal model all animals in the dataset receive breeding values. Hence in
the dataset shown in Table 4.5, we would need to add the dams.
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Table 4.6: Body Weight, Breast Circumference, Breed, Sire and
Dam of Beef Cattle Animals

Animal Body Weight Breast Circumference Breed Sire Dam
1 471 176 Angus S1 D1
2 463 177 Angus S1 D2
3 481 178 Simmental S3 D3
4 470 179 Angus S2 D2
5 496 179 Simmental S3 D3
6 491 180 Simmental S4 D4
7 518 181 Limousin S5 D5
8 511 182 Limousin S5 D5
9 510 183 Limousin S6 D6

10 541 184 Limousin S6 D7

The vector u contains breeding values for all animals in the dataset, also from
parents that do not have observations. Hence

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆1𝑆2...𝐷1𝐷2...12...10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The expected value and the variance-covariance matrix of u are defined as

𝐸(u) = 0 (4.18)𝑣𝑎𝑟(u) = D = A𝜎2𝑢 (4.19)

where the matrix A corresponds to the numerator relationship matrix. This
matrix contains the probabilities of two animals sharing alleles identical by
descent on the offdiagonal elements. The diagonal elements of A are computed
as one plus the inbreeding coefficient of an animal. The inbreeding coefficient
of an animal is given by half of the relationship coefficient of the parents.
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