Problem 1: Regression Analysis
The following dataset on body weight and on futher observations on a
number of animals is given.
| 1 | 176 | 471 | 5.0 | 161 | 
| 2 | 177 | 463 | 4.2 | 121 | 
| 3 | 178 | 481 | 4.9 | 157 | 
| 4 | 179 | 470 | 3.0 | 165 | 
| 5 | 179 | 496 | 6.8 | 136 | 
| 6 | 180 | 491 | 4.9 | 123 | 
| 7 | 181 | 518 | 4.4 | 163 | 
| 8 | 182 | 511 | 4.4 | 149 | 
| 9 | 183 | 510 | 3.5 | 143 | 
| 10 | 184 | 541 | 4.7 | 130 | 
The data can be read from https://charlotte-ngs.github.io/asmss2023/data/asm_bw_mult_reg.csv.
The additional columns contain data on body condition score (BCS) and
height (HEI).
Tasks
- Build a regression model of body weight on the other observations
using the dataset given above.
- Set up the matrix \(\mathbf{X}\)
and the vectors \(\mathbf{y}\), \(\mathbf{b}\) and \(\mathbf{e}\).
- Compute estimate for the regression coefficients in the model
defined above.
 
Your Solution
- Start by building the model which includes the decision of what type
of components go into the vector \(\mathbf{b}\). Then write down the model in
matrix-vector notation.
- Determine all the components of \(\mathbf{X}\), \(\mathbf{y}\), \(\mathbf{b}\) and \(\mathbf{e}\).
- Compute the solution for $
 
 
Problem 2
Use the same dataset as in Problem 1 and verify your results using
the function lm() in R.
Your Solution
- Read the data into a dataframe
- Use the lm()function which takes a formula to define
the model and a dataframe
- Use the function summary()on the result oflm()to show the results
Latest Changes: 2023-02-27 09:09:37 (pvr)
 
 
LS0tCnRpdGxlOiBBcHBsaWVkIFN0YXRpc3RpY2FsIE1ldGhvZHMgLSBOb3RlYm9vayAxCmF1dGhvcjogUGV0ZXIgdm9uIFJvaHIKZGF0ZTogJzIwMjMtMDItMjcnCm91dHB1dDogaHRtbF9ub3RlYm9vawpwYXJhbXM6CiAgZG9jdHlwZToKICAgIGxhYmVsOiBEb2N1bWVudCBUeXBlCiAgICB2YWx1ZTogc29sdXRpb24KICAgIGNob2ljZXM6CiAgICAtIGV4ZXJjaXNlCiAgICAtIHNvbHV0aW9uCiAgICAtIG5vdGVib29rCiAgaXNvbmxpbmU6CiAgICBsYWJlbDogT25saW5lICh5L24pCiAgICB2YWx1ZTogdHJ1ZQogICAgY2hvaWNlczoKICAgIC0gdHJ1ZQogICAgLSBmYWxzZQotLS0KCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgoKIyMgUHJvYmxlbSAxOiBSZWdyZXNzaW9uIEFuYWx5c2lzClRoZSBmb2xsb3dpbmcgZGF0YXNldCBvbiBib2R5IHdlaWdodCBhbmQgb24gZnV0aGVyIG9ic2VydmF0aW9ucyBvbiBhIG51bWJlciBvZiBhbmltYWxzIGlzIGdpdmVuLgoKYGBge3IgdGJsLWV4MDEtcDAxLWRhdGEsIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CnNfZXgwMV9wMDFfcGF0aCA8LSAiaHR0cHM6Ly9jaGFybG90dGUtbmdzLmdpdGh1Yi5pby9hc21zczIwMjMvZGF0YS9hc21fYndfbXVsdF9yZWcuY3N2Igp0YmxfZXgwMV9wMDFfZGF0YSA8LSByZWFkcjo6cmVhZF9jc3YoZmlsZSA9IHNfZXgwMV9wMDFfcGF0aCkKa25pdHI6OmthYmxlKHRibF9leDAxX3AwMV9kYXRhLAogICAgICAgICAgICAgYm9va3RhYnMgPSBUUlVFLAogICAgICAgICAgICAgbG9uZ3RhYmxlID0gVFJVRSwKICAgICAgICAgICAgIGVzY2FwZSA9IEZBTFNFKQpgYGAKClRoZSBkYXRhIGNhbiBiZSByZWFkIGZyb20gYHIgc19leDAxX3AwMV9wYXRoYC4gVGhlIGFkZGl0aW9uYWwgY29sdW1ucyBjb250YWluIGRhdGEgb24gYm9keSBjb25kaXRpb24gc2NvcmUgKEJDUykgYW5kIGhlaWdodCAoSEVJKS4KCiMjIyBUYXNrcwoKKiBCdWlsZCBhIHJlZ3Jlc3Npb24gbW9kZWwgb2YgYm9keSB3ZWlnaHQgb24gdGhlIG90aGVyIG9ic2VydmF0aW9ucyB1c2luZyB0aGUgZGF0YXNldCBnaXZlbiBhYm92ZS4KKiBTZXQgdXAgdGhlIG1hdHJpeCAkXG1hdGhiZntYfSQgYW5kIHRoZSB2ZWN0b3JzICRcbWF0aGJme3l9JCwgJFxtYXRoYmZ7Yn0kIGFuZCAkXG1hdGhiZntlfSQuCiogQ29tcHV0ZSBlc3RpbWF0ZSBmb3IgdGhlIHJlZ3Jlc3Npb24gY29lZmZpY2llbnRzIGluIHRoZSBtb2RlbCBkZWZpbmVkIGFib3ZlLgoKCiMjIyBZb3VyIFNvbHV0aW9uCgoqIFN0YXJ0IGJ5IGJ1aWxkaW5nIHRoZSBtb2RlbCB3aGljaCBpbmNsdWRlcyB0aGUgZGVjaXNpb24gb2Ygd2hhdCB0eXBlIG9mIGNvbXBvbmVudHMgZ28gaW50byB0aGUgdmVjdG9yICRcbWF0aGJme2J9JC4gVGhlbiB3cml0ZSBkb3duIHRoZSBtb2RlbCBpbiBtYXRyaXgtdmVjdG9yIG5vdGF0aW9uLgoqIERldGVybWluZSBhbGwgdGhlIGNvbXBvbmVudHMgb2YgJFxtYXRoYmZ7WH0kLCAkXG1hdGhiZnt5fSQsICRcbWF0aGJme2J9JCBhbmQgJFxtYXRoYmZ7ZX0kLgoqIENvbXB1dGUgdGhlIHNvbHV0aW9uIGZvciAkXGhhdHtcbWF0aGJme2J9fQoKCgoKCiMjIFByb2JsZW0gMgoKVXNlIHRoZSBzYW1lIGRhdGFzZXQgYXMgaW4gUHJvYmxlbSAxIGFuZCB2ZXJpZnkgeW91ciByZXN1bHRzIHVzaW5nIHRoZSBmdW5jdGlvbiBgbG0oKWAgaW4gUi4gCgojIyMgWW91ciBTb2x1dGlvbgoKKiBSZWFkIHRoZSBkYXRhIGludG8gYSBkYXRhZnJhbWUKKiBVc2UgdGhlIGBsbSgpYCBmdW5jdGlvbiB3aGljaCB0YWtlcyBhIGZvcm11bGEgdG8gZGVmaW5lIHRoZSBtb2RlbCBhbmQgYSBkYXRhZnJhbWUKKiBVc2UgdGhlIGZ1bmN0aW9uIGBzdW1tYXJ5KClgIG9uIHRoZSByZXN1bHQgb2YgYGxtKClgIHRvIHNob3cgdGhlIHJlc3VsdHMKCgoKIAoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK