Problem 1: Regression Analysis

The following dataset on body weight and on futher observations on a number of animals is given.

Animal Breast Circumference Body Weight BCS HEI
1 176 471 5.0 161
2 177 463 4.2 121
3 178 481 4.9 157
4 179 470 3.0 165
5 179 496 6.8 136
6 180 491 4.9 123
7 181 518 4.4 163
8 182 511 4.4 149
9 183 510 3.5 143
10 184 541 4.7 130

The data can be read from https://charlotte-ngs.github.io/asmss2023/data/asm_bw_mult_reg.csv. The additional columns contain data on body condition score (BCS) and height (HEI).

Tasks

  • Build a regression model of body weight on the other observations using the dataset given above.
  • Set up the matrix \(\mathbf{X}\) and the vectors \(\mathbf{y}\), \(\mathbf{b}\) and \(\mathbf{e}\).
  • Compute estimate for the regression coefficients in the model defined above.

Your Solution

  • Start by building the model which includes the decision of what type of components go into the vector \(\mathbf{b}\). Then write down the model in matrix-vector notation.
  • Determine all the components of \(\mathbf{X}\), \(\mathbf{y}\), \(\mathbf{b}\) and \(\mathbf{e}\).
  • Compute the solution for $

Problem 2

Use the same dataset as in Problem 1 and verify your results using the function lm() in R.

Your Solution

  • Read the data into a dataframe
  • Use the lm() function which takes a formula to define the model and a dataframe
  • Use the function summary() on the result of lm() to show the results

Latest Changes: 2023-02-27 09:09:37 (pvr)

LS0tCnRpdGxlOiBBcHBsaWVkIFN0YXRpc3RpY2FsIE1ldGhvZHMgLSBOb3RlYm9vayAxCmF1dGhvcjogUGV0ZXIgdm9uIFJvaHIKZGF0ZTogJzIwMjMtMDItMjcnCm91dHB1dDogaHRtbF9ub3RlYm9vawpwYXJhbXM6CiAgZG9jdHlwZToKICAgIGxhYmVsOiBEb2N1bWVudCBUeXBlCiAgICB2YWx1ZTogc29sdXRpb24KICAgIGNob2ljZXM6CiAgICAtIGV4ZXJjaXNlCiAgICAtIHNvbHV0aW9uCiAgICAtIG5vdGVib29rCiAgaXNvbmxpbmU6CiAgICBsYWJlbDogT25saW5lICh5L24pCiAgICB2YWx1ZTogdHJ1ZQogICAgY2hvaWNlczoKICAgIC0gdHJ1ZQogICAgLSBmYWxzZQotLS0KCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgoKIyMgUHJvYmxlbSAxOiBSZWdyZXNzaW9uIEFuYWx5c2lzClRoZSBmb2xsb3dpbmcgZGF0YXNldCBvbiBib2R5IHdlaWdodCBhbmQgb24gZnV0aGVyIG9ic2VydmF0aW9ucyBvbiBhIG51bWJlciBvZiBhbmltYWxzIGlzIGdpdmVuLgoKYGBge3IgdGJsLWV4MDEtcDAxLWRhdGEsIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CnNfZXgwMV9wMDFfcGF0aCA8LSAiaHR0cHM6Ly9jaGFybG90dGUtbmdzLmdpdGh1Yi5pby9hc21zczIwMjMvZGF0YS9hc21fYndfbXVsdF9yZWcuY3N2Igp0YmxfZXgwMV9wMDFfZGF0YSA8LSByZWFkcjo6cmVhZF9jc3YoZmlsZSA9IHNfZXgwMV9wMDFfcGF0aCkKa25pdHI6OmthYmxlKHRibF9leDAxX3AwMV9kYXRhLAogICAgICAgICAgICAgYm9va3RhYnMgPSBUUlVFLAogICAgICAgICAgICAgbG9uZ3RhYmxlID0gVFJVRSwKICAgICAgICAgICAgIGVzY2FwZSA9IEZBTFNFKQpgYGAKClRoZSBkYXRhIGNhbiBiZSByZWFkIGZyb20gYHIgc19leDAxX3AwMV9wYXRoYC4gVGhlIGFkZGl0aW9uYWwgY29sdW1ucyBjb250YWluIGRhdGEgb24gYm9keSBjb25kaXRpb24gc2NvcmUgKEJDUykgYW5kIGhlaWdodCAoSEVJKS4KCiMjIyBUYXNrcwoKKiBCdWlsZCBhIHJlZ3Jlc3Npb24gbW9kZWwgb2YgYm9keSB3ZWlnaHQgb24gdGhlIG90aGVyIG9ic2VydmF0aW9ucyB1c2luZyB0aGUgZGF0YXNldCBnaXZlbiBhYm92ZS4KKiBTZXQgdXAgdGhlIG1hdHJpeCAkXG1hdGhiZntYfSQgYW5kIHRoZSB2ZWN0b3JzICRcbWF0aGJme3l9JCwgJFxtYXRoYmZ7Yn0kIGFuZCAkXG1hdGhiZntlfSQuCiogQ29tcHV0ZSBlc3RpbWF0ZSBmb3IgdGhlIHJlZ3Jlc3Npb24gY29lZmZpY2llbnRzIGluIHRoZSBtb2RlbCBkZWZpbmVkIGFib3ZlLgoKCiMjIyBZb3VyIFNvbHV0aW9uCgoqIFN0YXJ0IGJ5IGJ1aWxkaW5nIHRoZSBtb2RlbCB3aGljaCBpbmNsdWRlcyB0aGUgZGVjaXNpb24gb2Ygd2hhdCB0eXBlIG9mIGNvbXBvbmVudHMgZ28gaW50byB0aGUgdmVjdG9yICRcbWF0aGJme2J9JC4gVGhlbiB3cml0ZSBkb3duIHRoZSBtb2RlbCBpbiBtYXRyaXgtdmVjdG9yIG5vdGF0aW9uLgoqIERldGVybWluZSBhbGwgdGhlIGNvbXBvbmVudHMgb2YgJFxtYXRoYmZ7WH0kLCAkXG1hdGhiZnt5fSQsICRcbWF0aGJme2J9JCBhbmQgJFxtYXRoYmZ7ZX0kLgoqIENvbXB1dGUgdGhlIHNvbHV0aW9uIGZvciAkXGhhdHtcbWF0aGJme2J9fQoKCgoKCiMjIFByb2JsZW0gMgoKVXNlIHRoZSBzYW1lIGRhdGFzZXQgYXMgaW4gUHJvYmxlbSAxIGFuZCB2ZXJpZnkgeW91ciByZXN1bHRzIHVzaW5nIHRoZSBmdW5jdGlvbiBgbG0oKWAgaW4gUi4gCgojIyMgWW91ciBTb2x1dGlvbgoKKiBSZWFkIHRoZSBkYXRhIGludG8gYSBkYXRhZnJhbWUKKiBVc2UgdGhlIGBsbSgpYCBmdW5jdGlvbiB3aGljaCB0YWtlcyBhIGZvcm11bGEgdG8gZGVmaW5lIHRoZSBtb2RlbCBhbmQgYSBkYXRhZnJhbWUKKiBVc2UgdGhlIGZ1bmN0aW9uIGBzdW1tYXJ5KClgIG9uIHRoZSByZXN1bHQgb2YgYGxtKClgIHRvIHNob3cgdGhlIHJlc3VsdHMKCgoKIAoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK