Regression On Dummy Variables

Peter von Rohr

2023-03-13

Why

- Discrete valued predictor variables like Breed
- Assignment of numeric codes to different breeds creates dependencies between expected values of different breeds

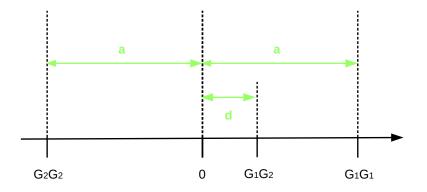
 $E(BW Angus) = b_0 + b_1$ $E(BW Limousin) = b_0 + 2b_1$ $E(BW Simmental) = b_0 + 3b_1$

Only estimates are b₀ and b₁
 Usually unreasonable, with one exception

Linear Regression in Genomic Analysis

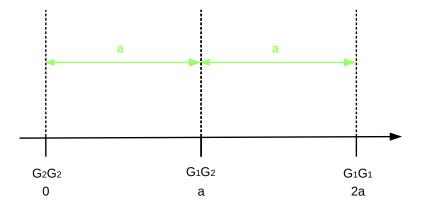
- Regression on the number of positive alleles
- Estimate for slope b_1 corresponds to estimate of marker effect
- Review single-locus model from Quantitative Genetics

Single Locus Model



- Assuming $d = 0 \rightarrow$ genotypic value of $G_1 G_2$ between homozygotes
- Shifting origin to genotypic value of G_2G_2

Modified Single Locus Model



- Transformation of regression on genotypes to regression on number of "positive" alleles (G₁)
- Relationships imposed by regression are meaningful

Relationships

Expected value for observation for a given genotype

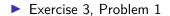
$$E(G_2G_2) = b_0 + 0 * a_G$$

$$E(G_1G_2) = b_0 + 1 * a_G$$

$$E(G_1G_1) = b_0 + 2 * a_G$$

$$E(G_1G_2) - E(G_2G_2) = E(G_1G_1) - E(G_1G_2) = a_G$$
$$E(G_1G_1) - E(G_2G_2) = 2a_G$$

Example Dataset



Regression On Dummy Variables

- Cases that are not like genomic data
- Example with breeds
- Discrete independent variables are called Factors (e.g. Breed)
- Different values that a factor can take are called Levels
- Levels for our example factor Breed are: Angus, Limousin and Simmental

Levels To Independent Variables

Use "separate" x-variable for each level, hence each of the breeds

Breed	Independent Variable
Angus	x ₁
Limousin	x ₂
Simmental	x ₃

Model

Observation y_{ij} stands for birth weight for animal j in breed i

$$y_{11} = b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 + e_{11}$$

$$y_{12} = b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 + e_{12}$$

$$\cdots = \cdots$$

$$y_{33} = b_0 + b_1 * 0 + b_2 * 0 + b_3 * 1 + e_{33}$$

Sort animals according to breeds

Matrix - Vector Notation

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

Models Not Of Full Rank

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

Least squares normal equations

$$\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b}^{(0)} = \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Solutions

- matrix X not of full rank, use Matrix::rankMatrix() to check
- ► **X**^T**X** cannot be inverted

solution

$$\mathbf{b}^{(0)} = (\mathbf{X}^T \mathbf{X})^- \mathbf{X}^T \mathbf{y}$$

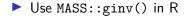
where $(\mathbf{X}^{T}\mathbf{X})^{-}$ stands for a generalized inverse

Generalized Inverse

matrix G is a generalized inverse of matrix A, if

 $\mathbf{A}\mathbf{G}\mathbf{A}=\mathbf{A}$

$$(\mathsf{AGA})^{\mathsf{T}} = \mathsf{A}^{\mathsf{T}}$$



Systems of Equations

For a consistent system of equations

$$Ax = y$$

$$x = Gy$$

if G is a generalized inverse of A.

x = GyAx = AGyAx = AGAx

Non Uniqueness

$$\tilde{\mathbf{x}} = \mathbf{G}\mathbf{y} + (\mathbf{G}\mathbf{A} - \mathbf{I})\mathbf{z}$$

yields a different solution for an arbitrary vector ${\boldsymbol{z}}$

$$A\tilde{x} = AGy + (AGA - A)z$$

Least Squares Normal Equations

• Instead of
$$Ax = y$$
, we have

$$\mathbf{X}^{\mathcal{T}} \mathbf{X} \mathbf{b}^{(0)} = \mathbf{X}^{\mathcal{T}} \mathbf{y}$$

$$\mathbf{b}^{(0)} = \mathbf{G}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

is a solution to the least squares normal equations

Parameter Estimator

But $\mathbf{b}^{(0)}$ is not an estimator for the parameter \mathbf{b} , because

Estimable Functions

Animal	Breed	Observation
1	Angus	16
2	Angus	10
3	Angus	19
4	Simmental	11
5	Simmental	13
6	Limousin	27

Model

$$\mathbf{y} = \begin{bmatrix} 16\\10\\19\\11\\13\\27 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0\\1 & 1 & 0 & 0\\1 & 1 & 0 & 0\\1 & 0 & 1 & 0\\1 & 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} \mu\\\alpha_1\\\alpha_2\\\alpha_3 \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

Normal Equations

$$X^T X b^0 = X^T y$$

$$\begin{bmatrix} 6 & 3 & 2 & 1 \\ 3 & 3 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu^0 \\ \alpha_1^0 \\ \alpha_2^0 \\ \alpha_3^0 \end{bmatrix} = \begin{bmatrix} 96 \\ 45 \\ 24 \\ 27 \end{bmatrix}$$

Solutions to Normal Equations

Elements of Solution	b_1^0	b_{2}^{0}	b_{3}^{0}	b_{4}^{0}
μ^{0}	16	14	27	-2982
α_1^0	-1	1	-12	2997
α_2^0	-4	-2	-15	2994
α_3^0	11	13	0	3009

Functions of Solutions

Linear Function	b_1^0	b_{2}^{0}	b_{3}^{0}	b_{4}^{0}
$\alpha_1^0 - \alpha_2^0$	3.0	3.0	3.0	3.0
$\mu^{0} + \alpha_{1}^{0}$	15.0	15.0	15.0	15.0
$\mu^{0} + 1/2(\alpha_{2}^{0} + \alpha_{3}^{0})$	19.5	19.5	19.5	19.5

- $\alpha_1^0 \alpha_2^0$: estimate of the difference between breed effects for Angus and Simmental
- $\mu^0 + \alpha_1^0$: estimate of the general mean plus the breed effect of Angus
- $\mu^0 + 1/2(\alpha_2^0 + \alpha_3^0)$: estimate of the general mean plus mean effect of breeds Simmental and Limousin

Definition of Estimable Functions

$$\mathbf{q}^{\mathsf{T}}\mathbf{b} = \mathbf{t}^{\mathsf{T}} E(\mathbf{y})$$

Why is q^Tb estimable?
Based on the definition of b and E(y)

$$\mathbf{q}^{\mathsf{T}}\mathbf{b} = \mathbf{t}^{\mathsf{T}}\mathbf{X}\mathbf{G}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

where $\textbf{XGX}^{\mathcal{T}}$ is the same for all choices of G

Examples

$$E(y_{1j}) = \mu + \alpha_1$$

with $\mathbf{t}^T = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}$ and $\mathbf{q}^T = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$
 $E(y_{2j}) = \mu + \alpha_2$

$$E(y_{3j}) = \mu + \alpha_3$$

Property

Based on the definition, the following property can be derived

$$\mathbf{q}^t = \mathbf{t}^T \mathbf{X}$$

with the definition of an estimable function $\mathbf{q}^T \mathbf{b}$, we get

$$\mathbf{q}^T \mathbf{b} = \mathbf{t}^T E(\mathbf{y})$$

 $\mathbf{q}^T \mathbf{G} \mathbf{X}^T \mathbf{y} = \mathbf{t}^T \mathbf{X} \mathbf{G} \mathbf{X}^T \mathbf{y}$

hence for any **G**, $\mathbf{q}^t = \mathbf{t}^T \mathbf{X}$ which is helpful to find \mathbf{q} for a given \mathbf{t}

When we want to test whether a certain vector ${\bf q}$ can establish an estimable function, we can test wheter

$$\mathbf{q}^T \mathbf{H} = \mathbf{q}^T$$

with $\mathbf{H} = \mathbf{G}\mathbf{X}^T\mathbf{X}$ Setting $\mathbf{q}^T = \mathbf{t}^T\mathbf{X}$, we get

$$\mathbf{q}^{\mathcal{T}}\mathbf{H} = \mathbf{t}^{\mathcal{T}}\mathbf{X}\mathbf{H} = \mathbf{t}^{\mathcal{T}}\mathbf{X} = \mathbf{q}^{\mathcal{T}}$$