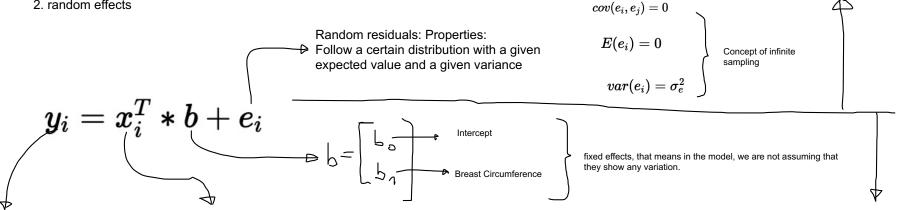
Mixed Linear Effects Models


Peter von Rohr

2023-04-24

Recap 2023-04-24:

So far: Fixed linear effect models (FLEM)

- * FLEM are called fixed, because apart from the random residual effect, they only contain, so-called fixed effects
- * In statistical modelling (Frequentist way), there are two type of effects
- 1. fixed effects
- 2. random effects

Body weight of animal i as response

fixed effects:

* Mostly interested in the effect size,

Random effects * Mostly interested in

variation

Side Note (not relevant for exam)

Bayesian Way of Statistical Modelling

- * no separation between fixed and random effects
- * separation of variables into "known" and "unknown" quantitties, e.g. Body Weight and Breast Circumference, they are all known, and intercept and regression slope are unknown

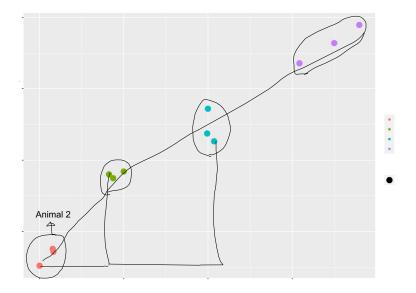
Predictor Breast circumference

- * all variables are assumed to follow a certain distribution...
- * Estimation principle for unknown quantities is based on the posterior density of the unknowns given the knowns

Repeated Measurements

► Same characteristics (Body Weight, BC, ...) measured multiple times for the same animal

	<u></u>		
Vr	Animal	Breast Circumference	Body Weight
1	(2	177.0000	463.0000
2	{ 2	177.3129	468.8940
	2	177.3292	467.8753
	5	179.0000	496.0000
	5	178.6501	495.0033
1	\ 5	178.7485	493.6563
,	∫ 7	181.0000	518.0000
8		180.9819	509.3221

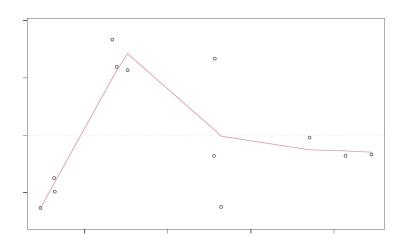

Column <u>Animal</u> no longer just a counter, it becomes a model factor

Properties

- What is the benefit of repeated measurements?
- ▶ Equivalent to more animals in the dataset?
- <u>Assumption:</u> repeated observations of the same animal are more "similar"
- ► No longer independence of observations

Data Scatterplot

Statistical Analysis


- ► Technically, same regression analysis is possible
- But assumption of independence is violoted
- Consequence of independence

$$var(\mathbf{e}) = \mathbf{I} * \sigma_e^2$$

* Check residuals plot

Diagnostics Plot

plot(lm_rep_obs)

ANOVA

##

Analysis of Variance

- * rather "old" or "established" type of statistical analysis
- * focus on variability, more specifically which model components can explain what percentage of variability of the data.

```
## Breed 2 7356 3678 22.29 0.000327 ***

## Residuals 9 1485 165

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

Df Sum Sq Mean Sq F value Pr(>F)

ANOVA I: Breed and Animal

```
## Df Sum Sq Mean Sq F value Pr(>F)

## Breed 2 7356 3678 160.06 3.53e-07 ***

## Animal 1 1302 1302 56.64 6.76e-05 ***

## Residuals 8 184 23

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

ANOVA II

```
aov bw no breed rep <- aov(`Body Weight` ~ Error(Animal),
                          data = tbl_rep_obs_no_breed)
summary(aov_bw_no_breed_rep)
##
## Error: Animal
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 3 8658 2886
##
## Error: Within
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 8 183.8 22.98
```

ANOVA III

```
aov_bw_breed_rep <- aov(`Body_Weight` ~ Breed +
                           Error(Animal),
                         data = tbl rep obs breed)
summary(aov bw breed rep)
##
## Error: Animal
            Df Sum Sq Mean Sq F value Pr(>F)
##
## Breed 2 7356 3678 2.826 0.388
## Residuals 1 1302 1302
##
## Error: Within
            Df Sum Sq Mean Sq F value Pr(>F)
##
## Residuals 8 183.8 22.98
```

Ime4

```
lme_bw_no_breed_rep <- lme4::lmer(`Body Weight` ~ (1|Animal</pre>
                                 data = tbl_rep_obs_no_bre
summary(lme_bw_no_breed_rep)
## Linear mixed model fit by REML ['lmerMod']
## Formula: 'Body Weight' ~ (1 | Animal)
##
     Data: tbl rep obs no breed
##
## REML criterion at convergence: 82.7
##
## Scaled residuals:
##
       Min 1Q Median 3Q
                                           Max
## -1.36360 -0.50301 0.06086 0.26850 1.43838
##
## Random effects:
```

Groups Name Variance Std.Dev.
Animal (Intercept) 954.34 30.892
Residual 22.98 4.794

With Breed

Animal	Body Weight	Breed
2	463.0000	Angus
2	468.8940	Angus
2	467.8753	Angus
5	496.0000	Simmental
5	495.0033	Simmental
5	493.6563	Simmental
7	518.0000	Limousin
7	509.3221	Limousin
7	506.5958	Limousin
10	541.0000	Limousin
10	547.3609	Limousin
10	533.9288	Limousin

ANOVA

```
aov_bw_breed_rep <- aov(`Body_Weight` ~ Breed +
                        Error(Animal),
                         data = tbl_rep_obs_breed)
summary(aov bw breed rep)
##
## Error: Animal
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Breed 2 7356 3678 2.826 0.388
## Residuals 1 1302 1302
##
## Error: Within
            Df Sum Sq Mean Sq F value Pr(>F)
##
## Residuals 8 183.8 22.98
```

lme4

##

```
lme_bw_breed_rep <- lme4::lmer(`Body Weight` ~ Breed +</pre>
                                 (1|Animal),
                                 data = tbl_rep_obs_breed)
summary(lme_bw_breed_rep)
## Linear mixed model fit by REML ['lmerMod']
## Formula: 'Body Weight' ~ Breed + (1 | Animal)
     Data: tbl rep obs breed
##
##
## REML criterion at convergence: 61.8
##
## Scaled residuals:
## Min 1Q Median
                               3Q
                                      Max
## -1.3714 -0.5383 0.0640 0.3213 1.4305
```

Random effects: Groups Name Variance Std.Dev. ## Animal (Intercept) 426.21 20.645