The first step is to read the data.
s_data_file <- "https://charlotte-ngs.github.io/gelasmss2021/data/gel_model_sel_ex02.csv"
tbl_modsel <- readr::read_csv2(s_data_file)Using ',' as decimal and '.' as grouping mark. Use read_delim() for more control.
Parsed with column specification:
cols(
  Id = col_double(),
  sex = col_double(),
  slh = col_double(),
  hrd = col_double(),
  age = col_double(),
  cw = col_double(),
  day = col_double(),
  hum = col_double()
)tbl_modselnames(tbl_modsel)[1] "Id"  "sex" "slh" "hrd" "age" "cw"  "day" "hum"lm_fit <- lm(cw ~ sex + slh + hrd, data = tbl_modsel)
summary(lm_fit)
Call:
lm(formula = cw ~ sex + slh + hrd, data = tbl_modsel)
Residuals:
   Min     1Q Median     3Q    Max 
-65.35 -29.00 -11.38  31.40  97.33 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  384.942     12.046  31.955  < 2e-16 ***
sex          -76.322      5.988 -12.745  < 2e-16 ***
slh            1.931      0.598   3.228  0.00125 ** 
hrd            1.257      0.340   3.698  0.00022 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 35.3 on 5321 degrees of freedom
Multiple R-squared:  0.03375,   Adjusted R-squared:  0.03321 
F-statistic: 61.96 on 3 and 5321 DF,  p-value: < 2.2e-16This result indicates that lm() fits a regression model. The predictors sexand slhand hrd should be treated as fixed effects.
tbl_modsel$sex <- as.factor(tbl_modsel$sex)
tbl_modsel$slh <- as.factor(tbl_modsel$slh)
tbl_modsel$hrd <- as.factor(tbl_modsel$hrd)
lm_fit2 <- lm(cw ~ sex + slh + hrd, data = tbl_modsel)
summary(lm_fit2)
Call:
lm(formula = cw ~ sex + slh + hrd, data = tbl_modsel)
Residuals:
     Min       1Q   Median       3Q      Max 
-27.4545  -5.4545  -0.1911   5.5455  29.8794 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 271.6235     1.4317  189.72   <2e-16 ***
sex2        -75.3135     1.4107  -53.39   <2e-16 ***
slh2         22.2634     0.2795   79.66   <2e-16 ***
slh3          3.4590     0.2817   12.28   <2e-16 ***
hrd2         87.9970     0.3604  244.16   <2e-16 ***
hrd3          8.6769     0.3605   24.07   <2e-16 ***
hrd4         58.8812     0.3578  164.58   <2e-16 ***
hrd5         19.8107     0.3574   55.44   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.315 on 5317 degrees of freedom
Multiple R-squared:  0.9464,    Adjusted R-squared:  0.9464 
F-statistic: 1.342e+04 on 7 and 5317 DF,  p-value: < 2.2e-16