Problem 1: Breeding Programs

What are the components of a breeding program. Insert the components into the following diagram.

Your Solution

Fill out the above shown diagram with the components of a breeding program.

Problem 2: Performance Test

In a traditional dairy cattle breeding program, sires are selected based on the predicted breeding values based on the performance of their daughters. For a solid selection decision, we want that the reliability (\(B\)) to be greater than \(0.75\). The reliability of a predicted breeding value can be approximated by the following formula.

\[B = \frac{n}{n+k}\] where \(n\) stands for the number of daughters and \(k\) corresponds to the term \((4-h^2)/h^2\). The variable \(h^2\) is the heritability of the trait under investigation. For our example we assume that \(h^2 = 0.25\).

Your Task

  • Compute the number of daugthers \(n\) that must be tested for a given sire such that \(B\) is at least \(0.5\).
  • How long does it take from the birth of a given sire to the time point where the predicted breeding value of the bull with a reliability of \(B\) of at least \(0.5\) is available? Here we assume that the first semen can be harvested from the bull at an age of \(12\) months and the average age at first calving is \(27\) months.

Your Solution

For the first task, start by computing the value of \(k\) for the given heritability \(h^2\). Then solve the above equation for the number of daughters \(n\) and insert the given numbers for \(B\) and the computed value of \(k\).


Latest Changes: 2021-04-18 14:32:13 (peter)

LS0tCnRpdGxlOiBHZW5ldGljIEV2YWx1YXRpb24gLSBOb3RlYm9vayAxCmF1dGhvcjogUGV0ZXIgdm9uIFJvaHIKZGF0ZTogMjAyMS0wNC0xNgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKIyBybWRoZWxwOjpzaG93X2tuaXRfaG9va19jYWxsKCkKa25pdHI6OmtuaXRfaG9va3Mkc2V0KGhvb2tfY29udmVydF9vZGcgPSBybWRoZWxwOjpob29rX2NvbnZlcnRfb2RnKQpgYGAKCgojIyBQcm9ibGVtIDE6IEJyZWVkaW5nIFByb2dyYW1zCldoYXQgYXJlIHRoZSBjb21wb25lbnRzIG9mIGEgYnJlZWRpbmcgcHJvZ3JhbS4gSW5zZXJ0IHRoZSBjb21wb25lbnRzIGludG8gdGhlIGZvbGxvd2luZyBkaWFncmFtLgoKYGBge3IgZW1wdHktYnAtZGlhZ3JhbSwgZWNobz1GQUxTRSwgaG9va19jb252ZXJ0X29kZz1UUlVFLCBmaWdfcGF0aD0ib2RnIiwgb3V0LndpZHRoPSI4MCUifQojcm1kaGVscDo6dXNlX29kZ19ncmFwaGljKHBzX3BhdGggPSAib2RnL2VtcHR5LWJwLWRpYWdyYW0ub2RnIikKa25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MocGF0aCA9ICJvZGcvZW1wdHktYnAtZGlhZ3JhbS5wbmciKQpgYGAKCgojIyMgWW91ciBTb2x1dGlvbgpGaWxsIG91dCB0aGUgYWJvdmUgc2hvd24gZGlhZ3JhbSB3aXRoIHRoZSBjb21wb25lbnRzIG9mIGEgYnJlZWRpbmcgcHJvZ3JhbS4KCgoKCgojIyBQcm9ibGVtIDI6IFBlcmZvcm1hbmNlIFRlc3QKYGBge3Igc2V0dXBfcDAyLCBlY2hvPUZBTFNFfQpiX3AwMiA8LSAwLjc1CmgyX3AwMiA8LSAwLjI1CmJ1bGxfYWdlX3AwMiA8LSAxMgpnZXN0X2xlbl9wMDIgPC0gOQphZmNfcDAyIDwtIDI3CmBgYAoKSW4gYSB0cmFkaXRpb25hbCBkYWlyeSBjYXR0bGUgYnJlZWRpbmcgcHJvZ3JhbSwgc2lyZXMgYXJlIHNlbGVjdGVkIGJhc2VkIG9uIHRoZSBwcmVkaWN0ZWQgYnJlZWRpbmcgdmFsdWVzIGJhc2VkIG9uIHRoZSBwZXJmb3JtYW5jZSBvZiB0aGVpciBkYXVnaHRlcnMuIEZvciBhIHNvbGlkIHNlbGVjdGlvbiBkZWNpc2lvbiwgd2Ugd2FudCB0aGF0IHRoZSByZWxpYWJpbGl0eSAoJEIkKSB0byBiZSBncmVhdGVyIHRoYW4gJGByIGJfcDAyYCQuIFRoZSByZWxpYWJpbGl0eSBvZiBhIHByZWRpY3RlZCBicmVlZGluZyB2YWx1ZSBjYW4gYmUgYXBwcm94aW1hdGVkIGJ5IHRoZSBmb2xsb3dpbmcgZm9ybXVsYS4gCgokJEIgPSBcZnJhY3tufXtuK2t9JCQKd2hlcmUgJG4kIHN0YW5kcyBmb3IgdGhlIG51bWJlciBvZiBkYXVnaHRlcnMgYW5kICRrJCBjb3JyZXNwb25kcyB0byB0aGUgdGVybSAkKDQtaF4yKS9oXjIkLiBUaGUgdmFyaWFibGUgJGheMiQgaXMgdGhlIGhlcml0YWJpbGl0eSBvZiB0aGUgdHJhaXQgdW5kZXIgaW52ZXN0aWdhdGlvbi4gRm9yIG91ciBleGFtcGxlIHdlIGFzc3VtZSB0aGF0ICRoXjIgPSBgciBoMl9wMDJgJC4gCgojIyMgWW91ciBUYXNrCiogQ29tcHV0ZSB0aGUgbnVtYmVyIG9mIGRhdWd0aGVycyAkbiQgdGhhdCBtdXN0IGJlIHRlc3RlZCBmb3IgYSBnaXZlbiBzaXJlIHN1Y2ggdGhhdCAkQiQgaXMgYXQgbGVhc3QgJDAuNSQuIAoqIEhvdyBsb25nIGRvZXMgaXQgdGFrZSBmcm9tIHRoZSBiaXJ0aCBvZiBhIGdpdmVuIHNpcmUgdG8gdGhlIHRpbWUgcG9pbnQgd2hlcmUgdGhlIHByZWRpY3RlZCBicmVlZGluZyB2YWx1ZSBvZiB0aGUgYnVsbCB3aXRoIGEgcmVsaWFiaWxpdHkgb2YgJEIkIG9mIGF0IGxlYXN0ICQwLjUkIGlzIGF2YWlsYWJsZT8gSGVyZSB3ZSBhc3N1bWUgdGhhdCB0aGUgZmlyc3Qgc2VtZW4gY2FuIGJlIGhhcnZlc3RlZCBmcm9tIHRoZSBidWxsIGF0IGFuIGFnZSBvZiAkYHIgYnVsbF9hZ2VfcDAyYCQgbW9udGhzIGFuZCB0aGUgYXZlcmFnZSBhZ2UgYXQgZmlyc3QgY2FsdmluZyBpcyAkYHIgYWZjX3AwMmAkIG1vbnRocy4KCiMjIyBZb3VyIFNvbHV0aW9uCkZvciB0aGUgZmlyc3QgdGFzaywgc3RhcnQgYnkgY29tcHV0aW5nIHRoZSB2YWx1ZSBvZiAkayQgZm9yIHRoZSBnaXZlbiBoZXJpdGFiaWxpdHkgJGheMiQuIFRoZW4gc29sdmUgdGhlIGFib3ZlIGVxdWF0aW9uIGZvciB0aGUgbnVtYmVyIG9mIGRhdWdodGVycyAkbiQgYW5kIGluc2VydCB0aGUgZ2l2ZW4gbnVtYmVycyBmb3IgJEIkIGFuZCB0aGUgY29tcHV0ZWQgdmFsdWUgb2YgJGskLiAKCgoKICAgCgoKYGBge3IsIGVjaG89RkFMU0UsIHJlc3VsdHM9J2FzaXMnfQpjYXQoJ1xuLS0tXG5cbiBfTGF0ZXN0IENoYW5nZXM6ICcsIGZvcm1hdChTeXMudGltZSgpLCAnJVktJW0tJWQgJUg6JU06JVMnKSwgJyAoJywgU3lzLmluZm8oKVsndXNlciddLCAnKV9cbicsIHNlcCA9ICcnKQpgYGAKIAo=