Fixed Linear Effects Models

Peter von Rohr

01.03.2021

Background

- \triangleright Given a population of N animals
- \triangleright Each animal has information on genotypes at loci G, H and I
- \blacktriangleright Each animal has an observation for one quantitative trait of interest y
- **Goal:** Predict genomic breeding values

Data

Observations

Two Types Of Models

- 1. **Genetic** Model: How can we decompose the phenotype into genetic part and non-genetic environmental part
- 2. **Statistical** Model: How to estimate unknown parameters from a dataset

Goals:

- 1. Use genetic model to show how observations and genetic information can be used to predict breeding values.
- 2. Use statistical techniques to do the prediction

Genetic Model

 \triangleright simple model from quantitative genetics to split phenotypic observation into

requestion part g and

 \blacktriangleright environmental part e

$$
y=g+e
$$

- \blacktriangleright environment: split into
	- **I** known environmental factors: herd, year, ... (β)
	- **In unknown random error** (ϵ)
- \triangleright polygenic model: use a finite number of loci to model genetic part of phenotypic observation

Genetic Model (II)

Phenotype

Polygenic Model

 \triangleright Component g can be decomposed into contributions g_i of single loci

$$
g=\sum_{j=1}^k g_j
$$

- Assume that loci are additive, hence genotypic values g_i depends on a_i with $d_i = 0$
- ► Genotypic values at locus *j* can either be $-a_j$, 0 or a_j
- Breeding values based on locus *j* depends on a_j .

Genotypic value g_i for animal *i* over all loci

$$
g_i = M_i \cdot a
$$

where M i is a row vector with elements -1 , 0 and 1 and a is the vector of all genotypic values of the positive homozygous genotypes of all loci.

Phenotypic Value

 \triangleright Collecting all components for an observation y_i for animal i

$$
y_i = W_i \cdot \beta + M_i \cdot a + \epsilon_i
$$

 \blacktriangleright all animals in the population

$$
y = W \cdot \beta + M \cdot a + \epsilon
$$

\n
$$
\blacktriangleright \text{ combining } b^T = \left[\begin{array}{cc} \beta & a \end{array} \right] \text{ and } X = \left[\begin{array}{cc} W & M \end{array} \right]
$$

\n
$$
y = X \cdot b + \epsilon
$$

Statistical Model

- \blacktriangleright genetic model from statistics point of view
- \triangleright phenotypic observation as response y
- \triangleright vector b (known environment and genotypic values) as unknown parameter
- \blacktriangleright fixed predictor variales in matrix X
- riangleright vector ϵ as random error terms
- \rightarrow Fixed Linear Effects Model

Parameter Estimation

- \blacktriangleright use regression model
- \blacktriangleright regression means both response and predictors are continuous
- \blacktriangleright example dataset: body weight on breast circumference

Regression Dataset

Regression Model

- response y : body weight
- \blacktriangleright predictor x: breast circumference
- \triangleright model for observation v_i

$$
y_i = x_i * b + \epsilon_i
$$

- **If** meaning of b: change x_i by one unit $\rightarrow y_i$ changes on average by *b* units.
- ightharpoonup use case: measure x_{N+1} for animal $N+1$ with unknown weight and use b to predict y_{N+1}

Least Squares

- \blacktriangleright How to find b such that y is best approximated by x
- Residuals $r_i = y_i x_i * \hat{b}$
- \triangleright Minimization of sum of squared residuals (LS)
- ► Use \hat{b} at minimal LS as estimate

LSQ Diagram

Sum of squared residuals

$$
LS = \sum_{i=1}^{n} r_i^2
$$

 $-$ In matrix-vector notation with r denoting the vector of all residuals

$$
LS = ||r||^2 = r^T r
$$

where ||*.*|| stands for the norm ("length in 2D") of a vector

$$
\blacktriangleright
$$
 Replacing *r* with $r = y - X\hat{b}$

$$
LS = (y - X\hat{b})^{\mathsf{T}}(y - X\hat{b}) = y^{\mathsf{T}}y - y^{\mathsf{T}}X\hat{b} - \hat{b}^{\mathsf{T}}X^{\mathsf{T}}y + \hat{b}^{\mathsf{T}}X^{\mathsf{T}}X\hat{b}
$$

Minimization

Set partial derivative of LS with respect to \hat{b} to 0

$$
\frac{\partial LS}{\partial \hat{b}} = -X^{\mathsf{T}}y - X^{\mathsf{T}}y + 2X^{\mathsf{T}}X\hat{b} = 0
$$

 \triangleright Take the \hat{b} that satisfies the above equation as the least squares estimate \hat{b}_{LS}

$$
X^T X \hat{b}_{LS} = X^T y
$$

$$
\hat{b}_{LS} = (X^TX)^{-1}X^Ty
$$

Variance of Error Terms

I Least Squares Procedure does not yield an estimate for σ^2 \blacktriangleright The estimator based on the residuals

$$
\hat{\sigma^2} = \frac{1}{n-p} \sum_{i=1}^n r_i^2
$$

Different Types of Regressions

 \blacktriangleright Regression through the origin

$$
y_i = x_i * b + e_i
$$

$$
y_i = b_0 + x_i * b + e_i
$$

Predictions

▶ One of the use-cases for regression is **prediction** \blacktriangleright Prediction means that given a regression model with estimated regression coefficients based on a data set, values of responses are to be predicted for new predictor values (x_{new})

$$
\hat{y} = x_{new} * \hat{b}
$$

ightharpoonup Mo predictions outside of the range of x used to estimate \hat{b}

Multiple Linear Regression

- \triangleright Use more than one predictor variable
- Example: Conformation traits BCS and HEI besides BC
- \blacktriangleright New model:

$$
y_i = b_0 + BC_i * b_1 + BCS_i * b_2 + HEI_i * b_3 + e_i
$$

 \blacktriangleright In matrix vector notation:

$$
y = Xb + \epsilon
$$
 with
$$
b^T = \left[\begin{array}{cccc} b_0 & b_1 & b_2 & b_3 \end{array}\right]
$$

New data set

Animal	Breast Circumference	Body Weight	BCS	HEI
1	176	471	5.0	161
2	177	463	4.2	121
3	178	481	4.9	157
4	179	470	3.0	165
5	179	496	6.8	136
6	180	491	4.9	123
7	181	518	4.4	163
8	182	511	4.4	149
9	183	510	3.5	143
10	184	541	4.7	130

Table 2: Dataset for Multiple Linear Regression

Goal

- Find solution for \hat{b}_{LS}
- \triangleright Same principle of least squares as with simple linear regression
- \triangleright Different dimensions for X and b
- \rightarrow Problem 1 in Exercise 2

Regression on Dummy Variables

- \triangleright What happens when predictor variables X are no longer continuous
- \blacktriangleright Examples: SNP-Genotypes
- I X can only take a few discrete values, e.g., 0*,* 1 or −1*,* 0*,* 1, . . .

 \rightarrow regression on dummy variables or just general fixed linear model.

Example: SNP-Data

Goal

- \triangleright Same as in linear regression: fit line through points such that least squares criterion holds
- \blacktriangleright Interpretation: Difference between effect levels
- \blacktriangleright For SNP-data: differences correspond to marker effects

Dummy Regression Line

Problem

- In many datasets X does not have full column-rank \blacktriangleright That means some columns of X show linear dependence
- As a consequence of that (X^TX) cannot be inverted

Solution

- ▶ Use a generalised inverse $(X^TX)^-$ to get a solution \hat{b}_{LS} for least squares normal equations
- ▶ Use estimable functions of \hat{b}_{LS} which are independent of the choice of $(X^TX)^-$
- \triangleright One example for estimable functions are differences between effect levels
- \triangleright For example of SNP-data these correspond to marker effects.

Generalised Inverse

- Reminder: the (ordinary) inverse A^{-1} of A is given by $A^{-1}A = I$, but A^{-1} exists only, if A is of full rank.
- A generalised inverse G of matrix A satisfies: $AGA = A$
- For the system of equations $Ax = y$, the vector $x = Gy$ is a solution, if $AGA = A$
- \triangleright For a generalised inverse G of A, the system of equation $Ax = y$ has solutions

$$
\tilde{x} = Gy + (GA - I)z
$$

for an arbitrary vector z.

ighthrow linear function of the parameter (b) that is identical to linear function of expected values of observations y, i.e.,

$$
q^T b = t^T E(y)
$$

 \triangleright estimable functions are invariant (do not change) with different generalised inverses.