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Background

I Given a population of N animals
I Each animal has information on genotypes at loci G , H and I
I Each animal has an observation for one quantitative trait of

interest y
I Goal: Predict genomic breeding values
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Two Types Of Models

1. Genetic Model: How can we decompose the phenotype into
genetic part and non-genetic environmental part

2. Statistical Model: How to estimate unknown parameters
from a dataset

Goals:

1. Use genetic model to show how observations and genetic
information can be used to predict breeding values.

2. Use statistical techniques to do the prediction



Genetic Model

I simple model from quantitative genetics to split phenotypic
observation into
I genetic part g and
I environmental part e

y = g + e

I environment: split into
I known environmental factors: herd, year, . . . (β)
I unknown random error (ε)

I polygenic model: use a finite number of loci to model genetic
part of phenotypic observation



Genetic Model (II)
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Polygenic Model

I Component g can be decomposed into contributions gj of
single loci

g =
k∑

j=1
gj

I Assume that loci are additive, hence genotypic values gj
depends on aj with dj = 0

I Genotypic values at locus j can either be −aj , 0 or aj
I Breeding values based on locus j depends on aj .



Genotypic Value

I Genotypic value gi for animal i over all loci

gi = Mi · a

where M_i is a row vector with elements −1, 0 and 1 and a is the
vector of all genotypic values of the positive homozygous
genotypes of all loci.



Phenotypic Value

I Collecting all components for an observation yi for animal i

yi = Wi · β + Mi · a + εi

I all animals in the population

y = W · β + M · a + ε

I combining bT =
[
β a

]
and X =

[
W M

]
y = X · b + ε



Statistical Model

I genetic model from statistics point of view
I phenotypic observation as response y
I vector b (known environment and genotypic values) as

unknown parameter
I fixed predictor variales in matrix X
I vector ε as random error terms

→ Fixed Linear Effects Model



Parameter Estimation

I use regression model
I regression means both response and predictors are continuous
I example dataset: body weight on breast circumference



Regression Dataset

Animal Breast Circumference Body Weight

1 176 471
2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
8 182 511
9 183 510

10 184 541



Regression Model

I response y : body weight
I predictor x : breast circumference
I model for observation yi

yi = xi ∗ b + εi

I meaning of b: change xi by one unit → yi changes on average
by b units.

I use case: measure xN+1 for animal N + 1 with unknown
weight and use b to predict yN+1



Least Squares

I How to find b such that y is best approximated by x
I Residuals ri = yi − xi ∗ b̂
I Minimization of sum of squared residuals (LS)
I Use b̂ at minimal LS as estimate
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Sum of squared residuals

LS =
n∑

i=1
r2
i

- In matrix-vector notation with r denoting the vector of all
residuals

LS = ||r ||2 = rT r

where ||.|| stands for the norm (“length in 2D”) of a vector

I Replacing r with r = y − Xb̂

LS = (y − Xb̂)T (y − Xb̂) = yT y − yT Xb̂ − b̂T XT y + b̂T XT Xb̂



Minimization

I Set partial derivative of LS with respect to b̂ to 0

∂LS
∂b̂

= −XT y − XT y + 2XT Xb̂ = 0

I Take the b̂ that satisfies the above equation as the least
squares estimate b̂LS

XT Xb̂LS = XT y

I Solution

b̂LS = (XT X )−1XT y



Variance of Error Terms

I Least Squares Procedure does not yield an estimate for σ2

I The estimator based on the residuals

σ̂2 = 1
n − p

n∑
i=1

r2
i



Different Types of Regressions

I Regression through the origin

yi = xi ∗ b + ei

I Regression with intercept

yi = b0 + xi ∗ b + ei



Predictions

I One of the use-cases for regression is prediction
I Prediction means that given a regression model with

estimated regression coefficients based on a data set, values of
responses are to be predicted for new predictor values (xnew )

ŷ = xnew ∗ b̂

I No predictions outside of the range of x used to estimate b̂



Multiple Linear Regression

I Use more than one predictor variable
I Example: Conformation traits BCS and HEI besides BC
I New model:

yi = b0 + BCi ∗ b1 + BCSi ∗ b2 + HEIi ∗ b3 + ei

I In matrix vector notation:

y = Xb + e

with bT =
[

b0 b1 b2 b3
]



New data set

Table 2: Dataset for Multiple Linear Regression

Animal Breast Circumference Body Weight BCS HEI

1 176 471 5.0 161
2 177 463 4.2 121
3 178 481 4.9 157
4 179 470 3.0 165
5 179 496 6.8 136
6 180 491 4.9 123
7 181 518 4.4 163
8 182 511 4.4 149
9 183 510 3.5 143

10 184 541 4.7 130



Goal

I Find solution for b̂LS
I Same principle of least squares as with simple linear regression
I Different dimensions for X and b

→ Problem 1 in Exercise 2



Regression on Dummy Variables

I What happens when predictor variables X are no longer
continuous

I Examples: SNP-Genotypes
I X can only take a few discrete values, e.g., 0, 1 or −1, 0, 1, . . .

→ regression on dummy variables or just general fixed linear model.



Example: SNP-Data



Goal

I Same as in linear regression: fit line through points such that
least squares criterion holds

I Interpretation: Difference between effect levels
I For SNP-data: differences correspond to marker effects



Dummy Regression Line
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Problem

I In many datasets X does not have full column-rank
I That means some columns of X show linear dependence
I As a consequence of that (XT X ) cannot be inverted



Solution

I Use a generalised inverse (XT X )− to get a solution b̂LS for
least squares normal equations

I Use estimable functions of b̂LS which are independent of the
choice of (XT X )−

I One example for estimable functions are differences between
effect levels

I For example of SNP-data these correspond to marker effects.



Generalised Inverse

I Reminder: the (ordinary) inverse A−1 of A is given by
A−1A = I, but A−1 exists only, if A is of full rank.

I A generalised inverse G of matrix A satisfies: AGA = A
I For the system of equations Ax = y , the vector x = Gy is a

solution, if AGA = A
I For a generalised inverse G of A, the system of equation

Ax = y has solutions

x̃ = Gy + (GA− I)z

for an arbitrary vector z .



Estimable Functions

I linear function of the parameter (b) that is identical to linear
function of expected values of observations y , i.e.,

qT b = tT E (y)

I estimable functions are invariant (do not change) with
different generalised inverses.


