Fixed Linear Effects Models

Peter von Rohr

01.03.2021

Background

- \triangleright Given a population of N animals
- Each animal has information on genotypes at loci G , H and I
- Each animal has an observation for one quantitative trait of interest v
- Goal: Predict genomic breeding values

Data

Observations

- 1. Genetic Model: How can we decompose the phenotype into genetic part and non-genetic environmental part
- 2. Statistical Model: How to estimate unknown parameters from a dataset

Goals:

- 1. Use genetic model to show how observations and genetic information can be used to predict breeding values.
- 2. Use statistical techniques to do the prediction

Genetic Model

why do all phenotypes have q ? ==> $y = e$?

Phenotype

Polvgenic Model

Simple version: only additive contributions of single loci to the genetic part (g) of a given trait

► Component g can be decomposed into contributions g_i of single loci

genetic contribution of single locus, e.g. in our dataset: loci G, H and I

- Assume that loci are additive, hence genotypic values g_i depends on a with $d_i = 0$ Marker effect
- Genotypic values at locus *j* can either be $-a_i$, \mathbb{Q} or a_i
- Breeding values based on locus *i* depends on \overrightarrow{a} .

Example: locus G: Genotypes G1G1, G1G2 and G2G2

$$
g = \sum_{j=1}^{\bigotimes_k} g_j
$$

Assuming only additive effects ==> gj is either -a, 0 or +a

* Sum over gj is replaced by a Matrix-Vector multiplication ==> $g = M * a$

Genotypic value g_i for animal *i* over all loci

$$
g_i = M_i \cdot a
$$

where M i is a row vector with elements -1 . 0 and 1 and a is the vector of all genotypic values of the positive homozygous genotypes of all loci.

Phenotypic Value

 \triangleright Collecting all components for an observation v_i for animal i

known envireonment genetic part $v_i = \overline{W_i \cdot \beta} + M_i \cdot a + \epsilon_i \longrightarrow$ random error

 \blacktriangleright all animals in the population

$$
y = W \cdot \beta + M \cdot a + \epsilon
$$

\n
$$
\triangleright \text{ combining } b^T = \left[\begin{array}{cc} \beta & a \end{array} \right] \text{ and } X = \left[\begin{array}{cc} W & M \end{array} \right]
$$

$$
y = X \cdot b + \epsilon
$$

Fixed linear effects model

Statistical Model

- genetic model from statistics point of view
- \triangleright phenotypic observation as response v
- riangleright vector b (known environment and genotypic values) as unknown parameter
- \blacktriangleright fixed predictor variales in matrix X
- rector ϵ as random error terms
- \rightarrow Fixed Linear Effects Model

Parameter Estimation

Regression Model

- response v : body weight
- redictor x : breast circumference
- model for observation v_i

 $\frac{C}{V_i} = x_i * b + \epsilon_i$

Body weight for animal i can be expressed as the product of an unknown parameter b times the breast circumference of animal i plus a random error

riangleright meaning of b: change x_i by one unit $\rightarrow y_i$ changes on average by *b* units.

ightharpoonup use case: measure x_{N+1} for animal $N+1$ with unknown $\frac{1}{2}$ weight and use b to predict v_{N+1}

Goal

Least Squares

- \blacktriangleright How to find b such that y is best approximated by x
- Residuals $r_i = y_i x_i * \hat{b}$
- \blacktriangleright Minimization of sum of squared residuals (LS)
- \blacktriangleright Use \hat{b} at minimal *LS* as estimate

LSQ Diagram

Sum of squared residuals

$$
LS=\sum_{i=1}^n r_i^2
$$

- In matrix-vector notation with r denoting the vector of all residuals $\sup_{t>0} LS = ||r||^2 = r \frac{r}{r} \left[\int_{\frac{r}{r} + \frac{r}{r}}^{\frac{r}{r}} \frac{f}{r} \right]_{\frac{r}{r}}^{\frac{1}{r}}$

where ||.|| stands for the norm ("length in 2D") of a vector

Replacing r with
$$
r = y - X\hat{b}
$$
 is a given value for b

 $LS = (v - X\hat{b})^T(v - X\hat{b}) = v^T v - v^T X\hat{b} - \hat{b}^T X^T y + \hat{b}^T X^T X\hat{b}$

Minimization

Set partial derivative of LS with respect to \hat{b} to 0

$$
\frac{\partial L S}{\partial \hat{b}} = -X^T y - X^T y + 2X^T X \hat{b} = 0
$$

Take the \hat{b} that satisfies the above equation as the least squares estimate \hat{b}_l s

$$
X^T X \hat{b}_{LS} = X^T y^2
$$

Solution ы for a regression model, X has full rank $\hat{b}_{LS} = \left(\overline{(X^TX)^{-1}}X^Ty\right)$

Variance of Frror Terms

E Least Squares Procedure does not yield an estimate for σ^2 \blacktriangleright The estimator based on the residuals

$$
\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n r_i^2
$$

unbiased

$$
\hat{y} = x_{new} * \hat{t}
$$

ighthalor No predictions outside of the range of x used to estimate \hat{b} $\rightarrow \times_{new}$ –179['] cm For an animal with unknown BW, we measure BC, an based on that measurement of BC, we predict BW.

Multiple Linear Regression

- \triangleright Use more than one predictor variable
- Example: Conformation traits BCS and HEI besides BC
- \blacktriangleright New model:

$$
y_i = b_0 + BC_i * b_1 + BCS_i * b_2 + HEI_i * b_3 + e_i
$$

New data set

Animal	Breast Circumference	Body Weight	BCS	HEI
1	176	471	5.0	161
2	177	463	4.2	121
3	178	481	4.9	157
4	179	470	3.0	165
5	179	496	6.8	136
6	180	491	4.9	123
7	181	518	4.4	163
8	182	511	4.4	149
9	183	510	3.5	143
10	184	541	4.7	130

Table 2: Dataset for Multiple Linear Regression

Goal

- Find solution for \hat{b}_{15}
- Same principle of least squares as with simple linear regression
- \triangleright Different dimensions for X and h
- \rightarrow Problem 1 in Exercise 2

Regression on Dummy Variables

Goal: Use result from regression to estimate marker effects

- \triangleright What happens when predictor variables X are no longer continuous
- \blacktriangleright Examples: SNP-Genotypes
- \triangleright X can only take a few discrete values, e.g., 0, 1 or $-1, 0, 1, \ldots$

 \rightarrow regression on dummy variables or just general fixed linear model.

Example: SNP-Data

Goal

- Same as in linear regression: fit line through points such that least squares criterion holds
- Interpretation: Difference between effect levels
- For SNP-data: differences correspond to marker effects

Dummy Regression Line

Problem

X contains just -1, 0 and 1

- In many datasets X does not have full column-rank
- \blacktriangleright That means some columns of X show linear dependence
- As a consequence of that (X^TX) cannot be inverted

Solution for regression Model, this works if X has full column rank, but if X contains just -1, 0 and 1, then it often does not have full column rank

$$
\hat{b}_{LS} = \underbrace{\left(\overline{(X^TX)^{-1}}\right)}_{\downarrow} X^T y
$$

cannot be computed

Solution

- ▶ Use a generalised inverse (X^TX) to get a solution \hat{b}_{LS} for least squares normal equations
- ► Use estimable functions of \hat{b}_l s which are independent of the choice of $(X^TX)^-$
- One example for estimable functions are differences between effect levels
- For example of SNP-data these correspond to marker effects.

Generalised Inverse

- Reminder: the (ordinary) inverse A^{-1} of A is given by $A^{-1}A = I$. but A^{-1} exists only, if A is of full rank.
- A generalised inverse G of matrix A satisfies: $AGA = A$
- For the system of equations $Ax = v$, the vector $x = Gv$ is a solution if $AGA = A$
- \triangleright For a generalised inverse G of A, the system of equation $Ax = y$ has solutions

$$
\tilde{x} = Gy + (GA - I)z
$$

for an arbitrary vector z.

Inear function of the parameter (b) that is identical to linear function of expected values of observations y , i.e.,

$$
q^T b = t^T E(y)
$$

Sestimable functions are invariant (do not change) with different generalised inverses.