Fixed Linear Effects Models

Peter von Rohr

01.03.2021

Background

- Given a population of N animals
- Each animal has information on genotypes at loci G, H and I
- Each animal has an observation for <u>one quantitative trait</u> of interest y
- Goal: Predict genomic breeding values

Data

Observations

- 1. **Genetic** Model: How can we decompose the <u>phenotype</u> into genetic part and non-genetic environmental part
- 2. **Statistical** Model: How to estimate unknown parameters from a dataset

Goals:

- 1. Use genetic model to show how observations and genetic information can be used to predict breeding values.
- 2. Use statistical techniques to do the prediction

Genetic Model

why do all phenotypes have g? ==> y = e?

Phenotype

Polygenic Model

Simple version: only additive contributions of single loci to the genetic part (g) of a given trait

Component g can be decomposed into contributions g_j of single loci

genetic contribution of single locus, e.g. in our dataset: loci G, H and I

Assume that loci are additive, hence genotypic values g_j depends on a_j with d_j = 0 Marker effect
 Genotypic values at locus j can either be -a_j, 0 or a_j
 Breeding values based on locus j depends on a_j.
 Example: locus G: Genotypes G1G1, G1G2 and G2G2

$$g = \sum_{j=1}^{k} g_j$$

Assuming only additive effects ==> gj is either -a, 0 or +a

* Sum over gj is replaced by a Matrix-Vector multiplication ==> g = M * a

Genotypic value g_i for animal i over all loci

$$g_i = M_i \cdot a$$

where M_{-i} is a row vector with elements -1, 0 and 1 and *a* is the vector of all genotypic values of the positive homozygous genotypes of all loci.

Phenotypic Value

Collecting all components for an observation y_i for animal i

known envireonment

$$y_i = \overbrace{W_i \cdot \beta}^{\text{known}} + \underbrace{M_i \cdot a}_{\text{genetic part}} + \epsilon_i \longrightarrow \text{random error}$$

all animals in the population

$$y = W \cdot \beta + M \cdot a + \epsilon$$

• combining $b^T = \begin{bmatrix} \beta & a \end{bmatrix}$ and $X = \begin{bmatrix} W & M \end{bmatrix}$

$$y = X \cdot b + \epsilon$$

Fixed linear effects model

Statistical Model

- genetic model from statistics point of view
- phenotypic observation as response y
- vector b (known environment and genotypic values) as unknown parameter
- fixed predictor variales in matrix X
- \blacktriangleright vector ϵ as random error terms
- \rightarrow Fixed Linear Effects Model

Parameter Estimation

Regression	Datase	et	<
	Animal	Breast Circumference	Body Weight
	1	176	471
	2	177	463
	3	178	481
	4	179	470
	5	179	496
	6	180	491
	7	181	518
	8	182	511
	9	183	510
	10	184	541

Regression Model

- response y: body weight
- predictor x: breast circumference
- model for observation y_i

 $y_i = x_i * b + \epsilon_i$

Body weight for animal i can be expressed as the product of an unknown parameter b times the breast circumference of animal i plus a random error

▶ meaning of b: change x_i by one unit → y_i changes on average by b units.

• use case: measure x_{N+1} for animal N+1 with unknown weight and use b to predict y_{N+1}

Goal

Least Squares

- How to find b such that y is best approximated by x
- $\blacktriangleright \text{ Residuals } r_i = y_i x_i * \hat{b}$
- Minimization of sum of squared residuals (LS)
- Use \hat{b} at minimal LS as estimate

LSQ Diagram

Sum of squared residuals

$$LS = \sum_{i=1}^{n} r_i^2$$

- In matrix-vector notation with *r* denoting the vector of all residuals $LS = ||r||^2 = r_{r_1}^T r_{r_2} = \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_{r_1}^{r_2} \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_{r_2}^{r_2} \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_{r_2}^{r_2} \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_{r_1}^{r_2} \int_{r_2}^{r_2} \int_$

where ||.|| stands for the norm ("length in 2D") of a vector

Replacing *r* with
$$r = y - X\hat{b}$$
 is a given value for b

$$\int LS = (y - X\hat{b})^{\mathsf{T}}(y - X\hat{b}) = y^{\mathsf{T}}y - y^{\mathsf{T}}X\hat{b} - \hat{b}^{\mathsf{T}}X^{\mathsf{T}}y + \hat{b}^{\mathsf{T}}X^{\mathsf{T}}X\hat{b}$$

Minimization

• Set partial derivative of LS with respect to \hat{b} to 0

$$\frac{\partial LS}{\partial \hat{b}} = -X^{T}y - X^{T}y + 2X^{T}X\hat{b} = 0$$

Take the b
 that satisfies the above equation as the least squares estimate b
 LS

$$X^{\mathsf{T}} X \hat{b}_{LS} = X^{\mathsf{T}} y^{\mathsf{T}}$$

Solution for a regression model, X has full rank $\hat{b}_{LS} = (X^T X)^{-1} X^T y$

Variance of Error Terms

Least Squares Procedure does not yield an estimate for σ²
 The estimator based on the residuals

$$\hat{\sigma^2} = \frac{1}{\frac{n-p}{\sqrt{\frac{n}{p}}}} \sum_{i=1}^n r_i^2$$

unbiased

$$\hat{y} = x_{new} * \hat{k}$$

▶ No predictions outside of the range of x used to estimate \hat{b} → χ_{new} -179 cm

For an <u>animal with unknown BW</u>, we measure <u>BC</u>, an based on that measurement of BC, we predict BW.

Multiple Linear Regression

- Use more than one predictor variable
- Example: Conformation traits BCS and HEI besides BC
- New model:

$$y_i = b_0 + \frac{BC_i * b_1}{BC_i * b_1} + \frac{BCS_i * b_2}{BCS_i * b_2} + \frac{HEI_i * b_3}{BCS_i * b_2} + e_i$$

New data set

Animal	Breast Circumference	Body Weight	BCS	HEI
1	176	471	5.0	161
2	177	463	4.2	121
3	178	481	4.9	157
4	179	470	3.0	165
5	179	496	6.8	136
6	180	491	4.9	123
7	181	518	4.4	163
8	182	511	4.4	149
9	183	510	3.5	143
10	184	541	4.7	130

Table 2: Dataset for Multiple Linear Regression

Goal

- Find solution for b_{LS}
- Same principle of least squares as with simple linear regression
- Different dimensions for X and b
- \rightarrow Problem 1 in Exercise 2

Regression on Dummy Variables

Goal: Use result from regression to estimate marker effects

- What happens when predictor variables X are no longer continuous
- Examples: SNP-Genotypes
- ▶ X can only take a few discrete values, e.g., 0, 1 or -1,0,1, ...
- ightarrow regression on dummy variables or just general fixed linear model.

Example: SNP-Data

Goal

- Same as in linear regression: fit line through points such that least squares criterion holds
- Interpretation: Difference between effect levels
- ▶ For SNP-data: differences correspond to marker effects

Dummy Regression Line

Problem

X contains just -1, 0 and 1

- In many datasets X does not have full column-rank
- That means some columns of X show linear dependence
- As a consequence of that $(X^T X)$ cannot be inverted

Solution for regression Model, this works if X has full column rank, but if X contains just -1, 0 and 1, then it often does not have full column rank

 $\hat{b}_{LS} = (X^T X)^{-1} X^T y$

cannot be computed

Solution

- Use a generalised inverse $(X^T X)^{\bigcirc}$ to get a solution \hat{b}_{LS} for least squares normal equations
- Use estimable functions of \hat{b}_{LS} which are independent of the choice of $(X^T X)^-$
- One example for estimable functions are differences between effect levels
- ▶ For example of SNP-data these correspond to marker effects.

Generalised Inverse

- ▶ Reminder: the (ordinary) inverse A^{-1} of A is given by $A^{-1}A = I$, but A^{-1} exists only, if A is of full rank.
- A generalised inverse G of matrix A satisfies: AGA = A
- ▶ For the system of equations Ax = y, the vector x = Gy is a solution, if AGA = A
- For a generalised inverse G of A, the system of equation Ax = y has solutions

$$\tilde{x} = Gy + (GA - I)z$$

for an arbitrary vector z.

linear function of the parameter (b) that is identical to linear function of expected values of observations y, i.e.,

$$q^T b = t^T E(y)$$

 estimable functions are invariant (do not change) with different generalised inverses.