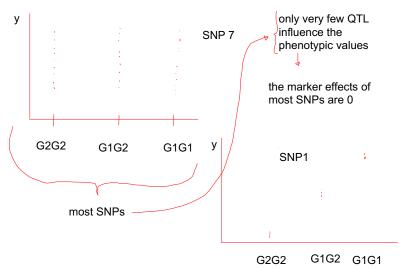
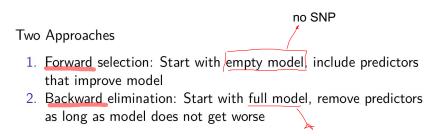


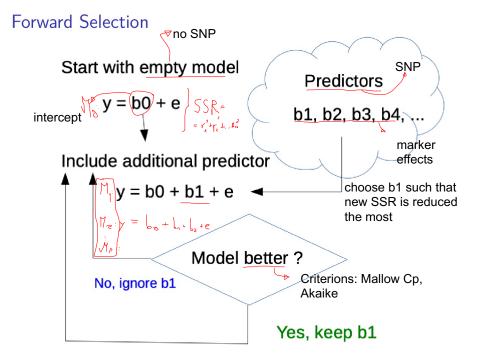
Peter von Rohr


2021-03-08

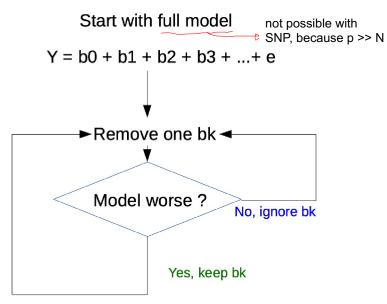
Goal: Find SNP 1 - SNP 6 out of the many SNPs


For the two SNPs 7 and 8 that are not linked to a QTL

Summary: 2 Problems 1. if we consider all SNP in our data set, then p>>N ==> least squares cannot be used 2. from genetic model: only few QTL for a given trait, ==> most SNP have marker effects (a) = 0


because the position of the QTL is unknown, we do not know which SNP have marker effects = 0

Approaches in Fixed Linear Model Framework


Possible solution for problem 2: Model selection to determine which SNP have marker effect that are not 0

all SNP, not possible due to p>>N

Backward Elimination except for SNP data, this is the preferred way

Model Selection With Genomic Data

cannot use backward elimination with genomic data, because parameter estimation in the full model cannot be

- Only backward elimination really works in practical problems
- Large number of predictors (1.5 * 10⁵)
- How to determine sequence of predictors to eliminate
- Fitting the full model is problematic

Mixed Linear Effect Model

2 Problems:

1. number of parameters p >> number of observations

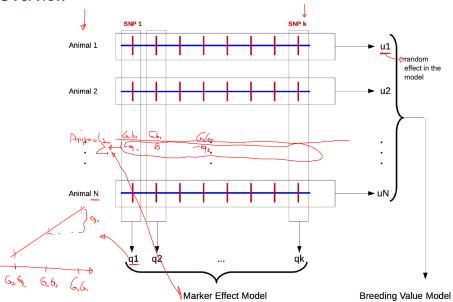
2. only few SNP are important

- One solution: replace fixed linear effect model by mixed linear effect model (mle)
- ► MLE: additional random effect besides error term
- Random effects are specified by expected value and variance
- In livestock breeding MLE have a good reputation from BLUP animal model

MLE In Genomics

two different types of model are different in their choice of random effects:

- 1. MEM: marker effects (a-values of the SNP) are taken to be random
- 2. BVM: genomic breeding value are taken as random


direct prediction of genomic breeding values without estimating marker effects

- Two different parametrizations
- 1. Marker Effect Model (MEM)
- 2. Breeding Value Model (BVM)

similar to the FLEM: 1. estimate marker effects 2. compute genomic breeding based on

the estimated marker effects

Overview

Marker Effect Model

In MEM random effects of markers are directly included in the model. For an idealized data set we can write

$$y = \underline{1_n \mu} + Wq + e$$

where

- y vector of length *n* with observations
- μ ~ general mean denoting fixed effects
- 1_n vector of length *n* of all ones
- q vector of length m of random SNP effects
- W design matrix relating SNP-genotypes to observations
- e vector of length n of random error terms

E(q) = (0); vor $(q_{f}) = \int bq^{2}$

Breeding Value Model $E(\underline{s}) = \emptyset$ $\sqrt{\alpha}(\underline{s}) = \underline{G} \cdot \overline{b},$

genomic relationship matrix

$$y = Xb + Zg + e$$

where

- y vector of length *n* with observations
- *b* vector of length *r* with fixed effects
- *X* incidence matrix linking elements in *b* to observations
- *g* vector of length *t* with random genomic breeding values
- Z incidence matrix linking elements in g to observations
- *e* vector of length *n* of random error terms