Genomic Relationship Matrix

Peter von Rohr

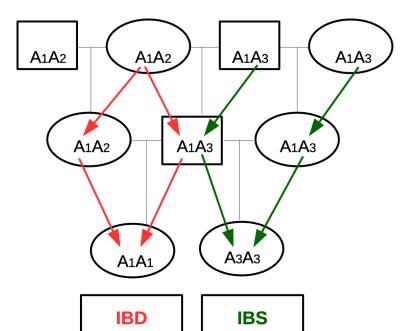
2021-03-08

Background

- ▶ Breeding value model uses genomic breeding values *g* as random effects
- ► Variance-covariance matrix of g are proposed to be proportional to matrix G

$$var(g) = G * \sigma_g^2$$

where G is called **genomic relationship matrix** (GRM)


Properties of *G*

- ightharpoonup genomic breeding values g are linear combinations of q
- g as deviations, that means E(g) = 0
- var(g) as product between G and σ_g^2 where G is the genomic relationship matrix
- G should be similar to A

Change of Identity Concept

- A is based on identity by descent
- ▶ *G* is based on identity by state (including ibd), assuming that the same allele has the same effect
- ▶ IBS can only be observed with SNP-genotype data

Identity

Linear Combination

- ► SNP marker effects (a values) from marker effect model are in vector q
- Genomic breeding values from breeding value model are determined by

$$g = U \cdot q$$

Matrix U is determined by desired properties of g

Deviation

► Genomic breeding values are defined as deviation from a certain basis

$$\rightarrow E(g) = 0$$

▶ How to determine matrix U such that E(g) = 0

Equivalence Between Models

Decomposition of phenotypic observation y_i with

Marker effect model

$$y_i = w_i^T \cdot q + e_i$$

Breeding value model

$$y_i = g_i + e_i$$

▶ g_i and $w_i^T \cdot q$ represent the same genetic effects and should be equivalent in terms of variability

Expected Values

- ▶ Required: $E(g_i) = 0$
- ▶ But: $E(w_i^T \cdot q) = q^T \cdot E(w_i)$
- ► Take *q* as constant SNP effects
- Assume w_i to be the random variable with:

$$w_i = \left\{ egin{array}{ll} 1 & ext{with probability} & p^2 \ 0 & ext{with probability} & 2p(1-p) \ -1 & ext{with probability} & (1-p)^2 \end{array}
ight.$$

 $\rightarrow E(w_i)$: For a single locus

$$E(w_i) = 1*p^2 + 0*2p(1-p) + (-1)(1-p)^2 = p^2 - 1 + 2p - p^2 = 2p - 1 \neq 0$$

Specification of g

Set

$$g_i = (w_i^T - s_i^T) \cdot q$$

with $s_i = E(w_i) = 2p - 1$

Resulting in

$$g = U \cdot q = (W - S) \cdot q$$

with matrix S having columns j with all elements equal to $2p_j-1$ where p_j is the allele frequency of the SNP allele associated with the positive effect.

Genetic Variance

- Requirement: $var(g) = G * \sigma_g^2$
- Result from Gianola et al. (2009):

$$\sigma_g^2 = \sigma_q^2 * \sum_{i=1}^k (1 - 2p_j(1 - p_j))$$

From earlier: $g = U \cdot q$

$$var(g) = var(U \cdot q) = U \cdot var(q) \cdot U^{T} = UU^{T}\sigma_{q}^{2}$$

Combining

$$var(g) = UU^{T}\sigma_{q}^{2} = G * \sigma_{q}^{2} * \sum_{i=1}^{k} (1 - 2p_{j}(1 - p_{j}))$$

Genomic Relationship Matrix

$$G = \frac{UU^{T}}{\sum_{j=1}^{k} (1 - 2p_{j}(1 - p_{j}))}$$

How To Compute *G*

- ▶ Read matrix W
- ▶ For each column j of W compute frequency p_j
- ► Compute matrix S and $\sum_{j=1}^{k} (1 2p_j(1 p_j))$ from p_j
- ightharpoonup Compute U from W and S
- Compute G