Least Absolute Shrinkage And Selection Operator (LASSO)

Peter von Rohr

22.03.2021

Fixed Linear Effect Model

Back to

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

All $\beta_0, \beta_1, \ldots, \beta_p$ into vector β of length (p+1)

$$y = X\beta + \epsilon$$

• Only random componente: ϵ with

$$E(\epsilon) = 0$$
 and $var(\epsilon) = I * \sigma^2$

Parameter Estimation

Least Squares

$$\hat{\beta}_{LS} = \operatorname{argmin}_{\beta} ||y - X\beta||^2$$

Normal Equations

$$(X^{\mathsf{T}}X)\hat{\beta}_{LS} = X^{\mathsf{T}}y$$

• Existence of $(X^T X)^{-1}$?

1. Yes:
$$\hat{\beta}_{LS} = (X^T X)^{-1} X^T y$$

2. No: $b_0 = (X^T X)^{-} X^T y$

with $(X^T X)^-$ being a generalized inverse of $(X^T X)$

Generalized Inverse

System of equations

$$Ax = y$$

with coefficient matrix A, vector of unknowns x and vector of right hand side y

- If A^{-1} exists, then unknowns $x = A^{-1}y$
- If A⁻¹ does not exist, x = A[−]y is one solution with A[−] being a generalized inverse
- ▶ Generalized inverse *A*[−] defined by

$$AA^{-}A = A$$

Solutions

• If A^- is a generalized inverse of A then Ax = y has solutions

$$\tilde{x} = A^- y + (A^- A - I)z$$

for aribitrary z

Proof

$$A\tilde{x} = AA^{-}y + A(A^{-}A - I)z = AA^{-}y + (AA^{-}A - AI)z = AA^{-}y = y$$

because $AA^{-}A = A$.

Results

$$\tilde{b}_0 = (X^T X)^- X^T y + ((X^T X)^- (X^T X) - I)z$$

is also a solution

 \blacktriangleright *b*₀ cannot be an estimate for β

Estimable Functions

Idea: construct linear functions $(q^T\beta)$ of the parameters β such that

- estimator can be found from b₀
- ▶ independent of choice of *b*⁰

Such linear functions $q^T \beta$ must satisfy

$$q^{\mathsf{T}}\beta = t^{\mathsf{T}}E(y)$$

for any vector t, then $q^T \beta$ is estimable

Determine q as

$$q^T = t^T X$$

Invariance to b_0

When $q^T \beta$ is estimable, then

q^T b₀ is always the same, independent of choice of b₀
Why?

• With
$$q^T = t^T X$$

$$q^{\mathsf{T}}b_0 = t^{\mathsf{T}}Xb_0 = t^{\mathsf{T}}X(X^{\mathsf{T}}X)^{-}X^{\mathsf{T}}y$$

is independent of choice of b_0 because $X(X^TX)^-X^T$ is independent of choice of $(X^TX)^-$

Summary

Use of generalized inverse $(X^T X)^-$ of normal equations yields

- solutions b₀
- estimatble functions $q^T b_0$ which estimate $q^T \beta$
- ▶ independent of b₀

But for genomic data

- no possibility to determine important SNP loci
- need an alternative to least squares

Desirable properties

- 1. Subset Selection: determine important predictors
- 2. Shrinkage: limit parameter estimates to certain area
- Dimension Reduction: Reduce *p* predictors to *m* linear combinations where *m* < *p*

LASSO

- ... stands for Least Absolute Shrinkage and Selection Operator
- ... combines subset selection (1) and shrinkage (2)
- shrinkage is achieved by introduction of penality term
- subset selection is due to the form of penalty term

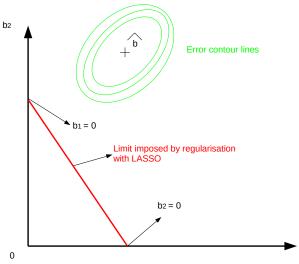
Shrinkage

penalty term added to least squares criterion

$$\hat{\beta}_{LASSO} = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

▶ large values of $|\beta_j|$ are penalized compared to small $|\beta_j|$

Subset Selection



b1

Find λ

\blacktriangleright λ is an additional parameter to be estimated from data

- use cross validation
 - split data randomly into training set (80 90%) and test set (10 - 20%)
 - \blacktriangleright assume a certain λ value and do parameter estimation with training data
 - try to predict test data with estimated parameters
 - repeat this many times
 - take that λ with the best predictive performance