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Fixed Linear Effect Model

I Back to

yi = β0 +
p∑

j=1
βjxij + εi

I All β0, β1, . . . , βp into vector β of length (p + 1)

y = Xβ + ε

I Only random componente: ε with

E (ε) = 0 and var(ε) = I ∗ σ2



Parameter Estimation

I Least Squares

β̂LS = argminβ||y − Xβ||2

I Normal Equations

(XT X )β̂LS = XT y

I Existence of (XT X )−1?

1. Yes: β̂LS = (XT X )−1XT y
2. No: b0 = (XT X )−XT y

with (XT X )− being a generalized inverse of (XT X )



Generalized Inverse

I System of equations

Ax = y

with coefficient matrix A, vector of unknowns x and vector of right
hand side y

I If A−1 exists, then unknowns x = A−1y

I If A−1 does not exist, x = A−y is one solution with A− being
a generalized inverse

I Generalized inverse A− defined by

AA−A = A



Solutions

I Why is A− a solution
I if AA−A = A, then AA−Ax = Ax
I when Ax = y , this gives A(A−y) = y
I hence A−y = x is a solution

I If A− is a generalized inverse of A then Ax = y has solutions

x̃ = A−y + (A−A− I)z

for aribitrary z

I Proof

Ax̃ = AA−y+A(A−A−I)z = AA−y+(AA−A−AI)z = AA−y = y

because AA−A = A.



Results

I b0 = (XT X )−XT y is a solution to (XT X )b0 = XT y
I But b0 is not unique, because for any (XT X )−

b̃0 = (XT X )−XT y + ((XT X )−(XT X )− I)z

is also a solution

I b0 cannot be an estimate for β



Estimable Functions

Idea: construct linear functions (qTβ) of the parameters β such
that

I estimator can be found from b0
I independent of choice of b0

Such linear functions qTβ must satisfy

qTβ = tT E (y)

for any vector t, then qTβ is estimable

I Determine q as

qT = tT X



Invariance to b0

When qTβ is estimable, then

I qT b0 is always the same, independent of choice of b0
I Why?
I With qT = tT X

qT b0 = tT Xb0 = tT X (XT X )−XT y

is independent of choice of b0 because X (XT X )−XT is
independent of choice of (XT X )−



Summary

Use of generalized inverse (XT X )− of normal equations yields

I solutions b0
I estimatble functions qT b0 which estimate qTβ
I independent of b0

But for genomic data

I no possibility to determine important SNP loci
I need an alternative to least squares



Alternatives To Least Squares

Desirable properties

1. Subset Selection: determine important predictors
2. Shrinkage: limit parameter estimates to certain area
3. Dimension Reduction: Reduce p predictors to m linear

combinations where m < p



LASSO

I . . . stands for Least Absolute Shrinkage and Selection
Operator

I . . . combines subset selection (1) and shrinkage (2)
I shrinkage is achieved by introduction of penality term
I subset selection is due to the form of penalty term



Shrinkage

I penalty term added to least squares criterion

β̂LASSO = argminβ


n∑

i=1

yi − β0 −
p∑

j=1
βjxij

2

+ λ
p∑

j=1
|βj |


I large values of |βj | are penalized compared to small |βj |
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Find λ

I λ is an additional parameter to be estimated from data
I use cross validation

I split data randomly into training set (80− 90%) and test set
(10− 20%)

I assume a certain λ value and do parameter estimation with
training data

I try to predict test data with estimated parameters
I repeat this many times
I take that λ with the best predictive performance


