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Fixed Linear Effect Model

» Back to
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» All 8o, b1, ..., Bp into vector 3 of length (p + 1)
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» Only random componente: e with

E(e) = 0 and var(e) = I ¥ 0°



Parameter Estimation

» Least Squares
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» Normal Equations

@BLS =XTy
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> Existence of (X7 X)~1?
1. Yes: s = (XTX)"1XTy
2. No: by = (X"TX)"XTy
with (X7 X)~ being a generalized inverse of (X X)



Generalized Inverse
» System of equations

Ax =y
with coefficient matrix A, vector of unknowns x and vector of right
hand side y
» If A~ exists, then unknowns x = A1y

» If A~! does not exist, x = A~y is one solution with A~ being
a generalized inverse

» Generalized inverse A~ defined by

AATA=A



Solutions

» Why is A~ a solution
> if AATA = A, then AA~ Ax = Ax
» when Ax = y, this gives A(A"y) =y
» hence A~y = x is a solution
» If A~ is a generalized inverse of A then Ax = y has solutions

F=Ay+(AA-I)z
for aribitrary z
» Proof
Ax = AATy+A(A"A-Nz = AA y+(AATA-ANz=AA"y =y

because AA—A = A.



Results

> by = (X"X)"XTy is a solution to (X7 X)by = Xy
» But by is not unique, because for any (X7 X)~

bo=(X"X)"XTy +((XTX)"(X"X) - )z
is also a solution

» by cannot be an estimate for 3



Estimable Functions

Idea: construct linear functions (g’ 3) of the parameters 3 such
that

» estimator can be found from bg
» independent of choice of by

Such linear functions g7 3 must satisfy

q"p=1tTE(y)
for any vector t, then g7 3 is estimable

» Determine g as

g" =t™X



Invariance to by

When g7 3 is estimable, then

» g7 by is always the same, independent of choice of by
> Why?
> With g7 =tTX

q by =t"TXbg=t"X(XTX)"XTy

is independent of choice of by because X(XTX)~XT is
independent of choice of (X7 X)~



Summary

Use of generalized inverse (X7 X)~ of normal equations yields

» solutions bg
> estimatble functions g’ by which estimate g’ 3
» independent of by

But for genomic data

» no possibility to determine important SNP loci
» need an alternative to least squares



Alternatives To Least Squares

Desirable properties edoee

1. Subset Selection: determine important predictors
2. Shrinkage: limit parameter estimates to certain area
@ Dimension Reduction: Reduce p predictors to m linear
> combinations where m < p



LASSO

» ... stands for Least Absolute Shrinkage and Selection
Operator
» ... combines subset selection (1) and shrinkage (2)

» shrinkage is achieved by introduction of penality term
» subset selection is due to the form of penalty term



Shrinkage

» penalty term added to least squares criterion
x
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» large values of |3j| are penalized compared to small | ;]



Subset Selection
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Limit imposed by regularisation
¥ with LASSO




Find A

ey ht [ qerals,

> )\ is an additional parameter to be estimated from data
> use cross validation '
> split data randomly into training set (80 — 90%) and test set
(10 — 20%)
» assume a certain A value and do parameter estimation with
training data Rt
» try to predict test data with estimated parameters— sl
repeat this many times
> take thati with the best predictive performance
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