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Statistics

The world of statistics is divided into

I Frequentists and
I Bayesians

Divergence in

I understanding of probability
I differentiation between components of a model and the data
I techniques to estimate parameters



F vs B

Topic Frequentists Bayesians
Probability Ratio between cardi-

nalities of sets
Measure of uncer-
tainty

Model and
Data

Parameter are un-
known, data are
known

Differentiation be-
tween knowns and
unknowns

Parameter
Estimation

ML or REML are used
for parameter estima-
tion

MCMC techniques to
approximate posterior
distributions



Linear Model

yi = β0 + β1xi1 + εi

Table 1: Separation Into Knowns And Unknowns

Term Known Unknown
yi X
x1 X
β0 X
β1 X
σ2 X



Example Dataset

Table 2: Dataset for Regression of Body Weight on Breast Circumference
for ten Animals

Animal Breast Circumference Body Weight

1 176 471
2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
8 182 511
9 183 510

10 184 541



Estimation Of Unknowns

I Estimates of unknowns β =
[
β0
β1

]
I Using Bayes Theorem:

f (β|y) = f (β, y)
f (y)

= f (y |β)f (β)
f (y)

∝ f (y |β)f (β)

where f (β): prior distribution and f (y |β): likelihood



Prior and Posterior

Figure 1: Distinctions between Prior and Posterior in Bayesian Statistics



Posterior Distribution

I How to get to posterior distribution f (β|y)
I Use regression as example
I β is a vector with two components, βT =

[
β0 β1

]
I Solution: accumulation of samples from full conditional

posterior distributions leads to samples from posterior
distribution



Prior and Likelihood

I What are the distributional assumptions (for regression
example and in general)

I Prior: f (β) usually assumed to be uniform
I Likelihood: f (y |β) assumed to be multivariate normal



Regression

I Full conditional distributions
I intercept: f (β0|β1, y) is a normal distribution
I slope: f (β1|β0, y) is normal distribution

I Draw random numbers from full conditional distributions in
turn

I Result will be samples from posterior distribution



Full Conditional Distributions



Estimates from Samples

I Given Samples from posterior distribution f (β|y)
I Estimates are computed as empirical means and standard

deviation based on the samples

βBayes = 1
N

N∑
t=1

β(t)

with N samples drawn from full conditional distributions



Gibbs Sampler

I Implementation using full conditional distributions
I Use Gibbs Sampler for regression example
I Step 1: Start with initial values β0 = β1 = 0
I Step 2: Compute mean and standard deviation for full

conditional distribution of β0
I Step 3: Draw random sample for β0
I Step 4 and 5: same for β1
I Step 6: Repeat 2-5 N times
I Step 7: Compute mean from samples


