Bayesian Approaches

Peter von Rohr

2021-03-29

Statistics

The world of statistics is divided into

- Frequentists and
- Bayesians

Divergence in

- understanding of probability
- differentiation between components of a model and the data
- techniques to estimate parameters

$\mathsf{F} \mathsf{vs} \mathsf{B}$

Topic	Frequentists	Bayesians	
Probability	Ratio between cardi-	Measure of uncer-	
	nalities of sets	tainty	
Model and	Parameter are un-	Differentiation be-	
Data	known, data are	tween knowns and	
	known	unknowns	
Parameter	ML or REML are used	MCMC techniques to	
Estimation	for parameter estima-	approximate posterior	
	tion	distributions	

Linear Model

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$$

Table 1: Separation Into Knowns And Unknowns

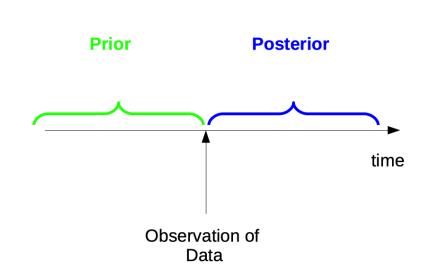
Term	Known	Unknown
Уi	Х	
<i>x</i> ₁	Х	
β_0		Х
β_1		Х
σ^2	Х	

Example Dataset

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Table 2: Dataset for Regression of Body Weight on Breast Circumference for ten Animals

Estimation Of Unknowns


• Estimates of unknowns
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

Using Bayes Theorem:

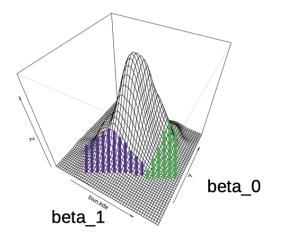
$$f(\beta|y) = \frac{f(\beta, y)}{f(y)}$$
$$= \frac{f(y|\beta)f(\beta)}{f(y)}$$
$$\propto f(y|\beta)f(\beta)$$

where $f(\beta)$: prior distribution and $f(y|\beta)$: likelihood

Prior and Posterior

Posterior Distribution

- How to get to posterior distribution $f(\beta|y)$
- Use regression as example
- ▶ β is a vector with two components, $\beta^T = \begin{vmatrix} \beta_0 & \beta_1 \end{vmatrix}$
- Solution: accumulation of samples from full conditional posterior distributions leads to samples from posterior distribution


Prior and Likelihood

- What are the distributional assumptions (for regression example and in general)
- Prior: $f(\beta)$ usually assumed to be uniform
- Likelihood: $f(y|\beta)$ assumed to be multivariate normal

Regression

- Full conditional distributions
 - intercept: $f(\beta_0|\beta_1, y)$ is a normal distribution
 - slope: $f(\beta_1|\beta_0, y)$ is normal distribution
- Draw random numbers from full conditional distributions in turn
- Result will be samples from posterior distribution

Full Conditional Distributions

Estimates from Samples

- Given Samples from posterior distribution $f(\beta|y)$
- Estimates are computed as empirical means and standard deviation based on the samples

$$eta_{Bayes} = rac{1}{N} \sum_{t=1}^{N} eta^{(t)}$$

with N samples drawn from full conditional distributions

Gibbs Sampler

- Implementation using full conditional distributions
- Use Gibbs Sampler for regression example
- Step 1: Start with initial values $\beta_0 = \beta_1 = 0$
- Step 2: Compute mean and standard deviation for full conditional distribution of β₀
- Step 3: Draw random sample for β_0
- Step 4 and 5: same for β_1
- Step 6: Repeat 2-5 N times
- Step 7: Compute mean from samples