Aim: Predict genomic breeding values
> Problems with least squares estimatimation in fixed linear effect models
> GBLUP with mixed linear effect models

> LASSO

> Further approach: Use Estimation techniques from Bayesian Statistics

Bayesian Approaches
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Statistics

» measure of
uncertainty

The world of statistics is divided into

» Frequentists and
» Bayesians Tre —

Divergence in

» understanding of probability
» differentiation between components of a model and the data
» techniques to estimate parameters

for us: marker effects or genomic breeding values
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Topic Frequentists Bayesians

Probability Ratio between cardi- | Measure of uncer-
nalities of sets tainty

_, Model and | Parameter are un- | Differentiation be-

Data known, data are | tween knowns and
known unknowns _ missire Jota

Parameter ML or REML are used | MCMC techniques to

Estimation for paramet; estima-/ approximate posterior

[ tion

distributions

L ML: maximum likelihood
REML: restricted ML

Lﬂ MCMC: Markov Chain Monte Carlo



Linear Model

BV

Example: Regression, with BW and BC

Frequentist:
Modell: y = Xb + e, with b and e
unknown

patE ne \BU

yi = Bo + Pixi1 + €

Table 1: Separation Into Knowns And Unknowns

Bc

Term | Known | Unknown
i X
X1 X
ﬂO X Bayesian Analysis
b1 X
XY

t Assumption for first analysis



Example Dataset

Table 2: Dataset for Regression of Body Weight on Breast Circumference
for ten Animals

Animal Breast Circumference Body Weight

1 176 471
2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
8 182 511
9 183 510
10 184 541




Estimation Of Unknowns
im of Bayesian Analysis: Estimates of unknows given the observed
realisations of the knowns (data set)

intercept
Bo "

b1

» Estimates of unknowns 3 =
slope

» Using Bayes Theorem:

/_?
f(Bly) = @ v )
posterior probability e — f ( y) " marginal density of y
G e oo FBF@) T
= f(y) > likelihood
o f(y|B)f(B)

proportional to

where f(3): prior distribution and f(y|3): likelihood

posterior density of the unknowns given the knows is proportional to the likelihood times the prior

joint density of beta and y



Prior and Posterior

measure of uncertainty related to the unknowns is
quantified by the the prior density of the unknowns.
Our regression f(\beta)
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Posterior Distribution

make a quantitative statement of the uncertainty of
the unknowns after observing y

How to get to posterior distribution| f(3]y

| 4
» Use regression as example
>
| 4

B is a vector with two components, 37 = [
Solution: accumulation of samples from fu

b .
2. f(\beta_1 \\beta 0,y) xﬁ which result in a random

sample of the posterior
distribution

1. f(\beta_0 1Y) m random numbers wm.} pool all random numbers

random numbers from 2.



Prior and Likelihood

the posterior density depends on two components
1. prior

2. likelihood E \ﬁ §
specify

» What are the distributional assumptions (for regression
example and in general)

» Prior: f(8) usually aw/

> Likelihood: f(y|3) assumed to be multivariate normal

no prior information



Regression

» Full conditional distributions
> intercept: f(fo|f1,y) is a normal distribution
> slope: (51|60, y) is normal distribution
» Draw random numbers from full conditional distributions in
turn
» Result will be samples from posterior distribution



Full Conditional Distributions
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Estimates from Samples

» Given Samples from posterior distribution f(8|y)
» Estimates are computed as empirical means and standard
deviation based on the samples

1 N
BBayes = N Z 6(t)
t=1.

with N samples drawn from full conditional distributions



G | b bS Sa m pl er How to get to random numbers and how are \beta_0 and \beta_1 defined
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for the full conditional distribution

Implementation using full conditional distributions
Use Gibbs Sampler for regression example
Step 1: Start with initial values fo = 81 =0
Step 2: Compute mean and standard deviatio,
conditional distribution of B ——— (¥}
Step 3: Drawirandom sample for Sy
Step 4 and 5: same for 31

Step 6: Repeat 2-5 /\It&sﬁw—
Step 7: Compute mean from samples L(\S‘\?'Dﬁ H%"Y\rb

NGE
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Starting point: N %° F -




