Aim: Predict genomic breeding values

> Problems with least squares estimatimation in fixed linear effect models

> GBLUP with mixed linear effect models

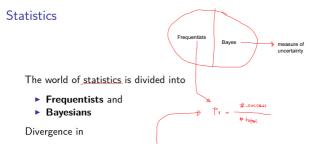
> LASSO

> Further approach: Use Estimation techniques from Bayesian Statistics

Bayesian Approaches

Peter von Rohr

2021-03-29



- understanding of probability
- differentiation between components of a model and the data
- techniques to estimate parameters

for us: marker effects or genomic breeding values

$\mathsf{F} \mathsf{vs} \mathsf{B}$

Topic		Frequentists	Bayesians	
	Probability	Ratio between cardi-	Measure of uncer-	
		nalities of sets	tainty	
	Model and	Parameter are un-	Differentiation be-	
	Data	known, data are	tween knowns and	
		known	unknowns missing dota	
	Parameter	ML or REML are used	MCMC techniques to	
Estimation		for parameter estima-	approximate posterior	
	(tion	distributions	
(ML: maximum likelihood REML: restricted ML	MCMC: Markov Chain Monte Carlo	

Linear Model

Example: Regression, with BW and BC

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$$

Table 1: Separation Into Knowns And Unknowns

Term	Known	Unknown
Уi	Х	
<i>x</i> ₁	Х	
β_0		Х
β_1		Х
σ^2	X	
	Assumption for	first analysis

Bayesian Analysis

Βc.

Example Dataset

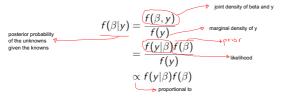
Table 2: Dataset for F	Regression of	f Body	Weight	on Breas	t Circumference
for ten Animals					

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Estimation Of Unknowns

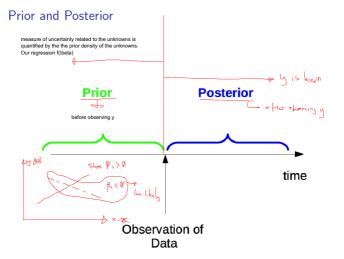
Aim of Bayesian Analysis: Estimates of unknows given the observed realisations of the knowns (data set)

Using Bayes Theorem:



where $f(\beta)$: prior distribution and $f(y|\beta)$: likelihood

posterior density of the unknowns given the knows is proportional to the likelihood times the prior



Posterior Distribution

make a quantitative statement of the uncertainty of the unknowns after observing y

• How to get to posterior distribution $f(\beta|y)$

- Use regression as example
- β is a vector with two components, $\beta^{T} = \left| \beta_{0} \right|$
- Solution: accumulation of samples from full conditional posterior distributions leads to samples from posterior

distribution

For the two unknowns (slope and intercept), we get two full conditional distributions:

pool all random numbers which result in a random sample of the posterior distribution

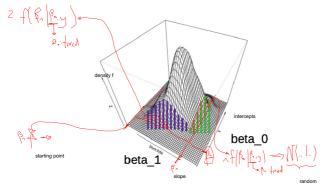
Prior and Likelihood

- What are the distributional assumptions (for regression example and in general)
- Prior: $f(\beta)$ usually assumed to be uniform
- Likelihood: $f(y|\beta)$ assumed to be multivariate normal

Regression

- Full conditional distributions
 - intercept: $f(\beta_0|\beta_1, y)$ is a normal distribution
 - slope: $f(\beta_1|\beta_0, y)$ is normal distribution
- Draw random numbers from full conditional distributions in turn
- Result will be samples from posterior distribution

Full Conditional Distributions



Estimates from Samples

- Given Samples from posterior distribution $f(\beta|y)$
- Estimates are computed as empirical means and standard deviation based on the samples

$$\beta_{Bayes} = \frac{1}{N} \sum_{t=1}^{N} \beta^{(t)}$$

with N samples drawn from full conditional distributions

- Implementation using full conditional distributions
- Use <u>Gibbs Sampler</u> for regression example
- Step 1: Start with initial values $\beta_0 = \beta_1 = 0$
- Step 3: Draw1random sample for β₀
- Step 4 and 5: same for β₁.
- Step 6: Repeat 2-5 <u>N</u> times _N
- Step 7: Compute mean from samples

