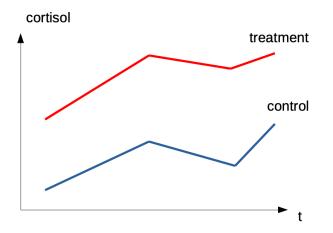
Model Selection

Peter von Rohr

19.04.2021

Why Statistical Modelling?

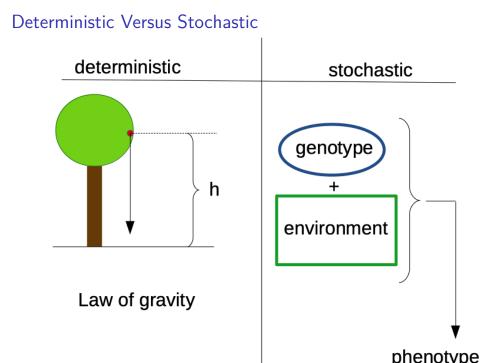
Some people believe, they do not need statistics. For them it is enough to look at a diagram



Statistical Modelling Because

Two types of dependencies between physical quantities

- 1. deterministic
- 2. stochastic



Statistical Model

- stochastic systems contains many sources of uncertainty
- statistical models can handle uncertainty
- components of a statistical model
 - response variable y
 - predictor variables x_1, x_2, \ldots, x_k
 - error term e
 - ▶ function m(x)

How Does A Statistical Model Work?

- predictor variables x₁, x₂,..., x_k are transformed by function m(x) to explain the response variable y
- uncertainty is captured by error term.
- as a formula, for observation i

$$y_i = m(x_i) + e_i$$

Which function m(x)?

class of functions that can be used as m(x) is infinitely large
 restrict to linear functions of predictor variables

Which predictor variables?

 Question, about which predictor variables to use is answered by model selection

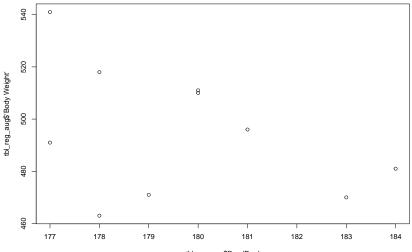
Why Model Selection

- Many predictor variables are available
- Are all of them relevant?
- What is the meaning of relevant in this context?

Example Dataset

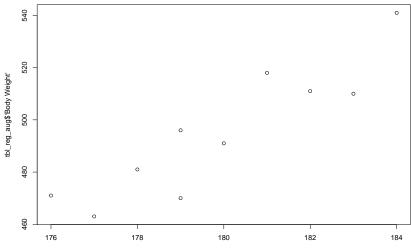
Animal	Breast Circumference	Body Weight	RandPred
1	176	471	179
2	177	463	178
3	178	481	184
4	179	470	183
5	179	496	181
6	180	491	177
7	181	518	178
8	182	511	180
9	183	510	180
10	184	541	177

No Relevance of Predictors



tbl_reg_aug\$RandPred

Relevance of Predictors



tbl_reg_aug\$'Breast Circumference'

Fitting a Regression Model

```
##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl reg aug)
##
## Residuals:
      Min 10 Median 30
##
                                    Max
## -39.163 -14.365 4.769 15.981 34.741
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1231.246 602.814 2.042 0.0754 .
## RandPred -4.096 3.354 -1.221 0.2568
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.21 on 8 degrees of freedom
## Multiple R-squared: 0.1571, Adjusted R-squared: 0.05175
## F-statistic: 1.491 on 1 and 8 DF, p-value: 0.2568
```

Fitting a Regression Model II

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl reg aug)
##
## Residuals:
##
       Min 10 Median 30
                                        Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```

Multiple Regression

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred.
      data = tbl_reg_aug)
##
##
## Residuals:
##
      Min
          10 Median 30 Max
## -12.778 -10.062 2.941 7.955 11.139
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -721.333 449.542 -1.605 0.152618
## `Breast Circumference` 8.269 1.496 5.529 0.000879 ***
## RandPred
                         -1.509 1.617 -0.933 0.381831
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.17 on 7 degrees of freedom
## Multiple R-squared: 0.843, Adjusted R-squared: 0.7981
## F-statistic: 18.79 on 2 and 7 DF, p-value: 0.001535
```

Why not taking all predictors?

- Additional parameters must be estimated from data
- Predictive power decreased with too many predictors (cannot be shown for this data set, because too few data points)
- Bias-variance trade-off

Bias-variance trade-off

Assume, we are looking for optimum prediction

$$s_i = \sum_{r=1}^q \hat{\beta}_{j_r} x_{ij_r}$$

with q relevant predictor variables

Average mean squared error of prediction s_i

$$MSE = n^{-1} \sum_{i=1}^{n} E\left[(m(x_i) - s_i)^2\right]$$

where m(.) denotes the linear function of the unknown true model.

Bias-variance trade-off II

MSE can be split into two parts

$$MSE = n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2 + n^{-1} \sum_{i=1}^{n} var(s_i)$$

where $n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2$ is called the squared **bias**

- Increasing q leads to reduced bias but increased variance (var(s_i))
- Hence, find s_i such that MSE is minimal
- Problem: cannot compute MSE because m(.) is not known
- \rightarrow estimate MSE

Mallows C_p statistic

- For a given model *M*, *SSE*(*M*) stands for the residual sum of squares.
- MSE can be estimated as

$$\widehat{\textit{MSE}} = \textit{n}^{-1}\textit{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2|\mathcal{M}|/\textit{n}$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model, $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , *n* is the number of observations and $|\mathcal{M}|$ stands for the number of predictors in \mathcal{M}

$$C_p(\mathcal{M}) = rac{SSE(\mathcal{M})}{\hat{\sigma}^2} - n + 2|\mathcal{M}|$$

Searching The Best Model

- Exhaustive search over all sub-models might be too expensive
- For p predictors there are $2^p 1$ sub-models
- With p = 16, we get 6.5535×10^4 sub-models
- \rightarrow step-wise approaches

Forward Selection

- 1. Start with smallest sub-model \mathcal{M}_0 as current model
- 2. Include predictor that reduces SSE the most to current model
- 3. Repeat step 2 until all predictors are chosen
- \rightarrow results in sequence $\mathcal{M}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \dots$ of sub-models
 - 4. Out of sequence of sub-models choose the one with minimal C_p

Backward Selection

- 1. Start with full model \mathcal{M}_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0 \supseteq \mathcal{M}_1 \supseteq \mathcal{M}_2 \supseteq \ldots$ of sub-models
 - 4. Out of sequence choose the one with minimal C_p

Considerations

- Whenever possible, choose backward selection, because it leads to better results
- If $p \ge n$, only forward is possible, but then consider LASSO

Alternative Selection Criteria

- ► AIC or BIC, requires distributional assumptions.
- AIC is implemented in MASS::stepAIC()
- Adjusted R² is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- Try in exercise