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Why Statistical Modelling?
Some people believe, they do not need statistics. For them it is
enough to look at a diagram



Statistical Modelling Because . . .

Two types of dependencies between physical quantities

1. deterministic
2. stochastic



Deterministic Versus Stochastic



Statistical Model

I stochastic systems contains many sources of uncertainty
I statistical models can handle uncertainty
I components of a statistical model

I response variable y
I predictor variables x1, x2, . . . , xk
I error term e
I function m(x)



How Does A Statistical Model Work?

I predictor variables x1, x2, . . . , xk are transformed by function
m(x) to explain the response variable y

I uncertainty is captured by error term.
I as a formula, for observation i

yi = m(xi) + ei



Which function m(x)?

I class of functions that can be used as m(x) is infinitely large
I restrict to linear functions of predictor variables



Which predictor variables?

I Question, about which predictor variables to use is answered by
model selection



Why Model Selection

I Many predictor variables are available
I Are all of them relevant?
I What is the meaning of relevant in this context?



Example Dataset

Animal Breast Circumference Body Weight RandPred

1 176 471 179
2 177 463 178
3 178 481 184
4 179 470 183
5 179 496 181
6 180 491 177
7 181 518 178
8 182 511 180
9 183 510 180
10 184 541 177
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Fitting a Regression Model

##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.163 -14.365 4.769 15.981 34.741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1231.246 602.814 2.042 0.0754 .
## RandPred -4.096 3.354 -1.221 0.2568
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.21 on 8 degrees of freedom
## Multiple R-squared: 0.1571, Adjusted R-squared: 0.05175
## F-statistic: 1.491 on 1 and 8 DF, p-value: 0.2568



Fitting a Regression Model II

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287



Multiple Regression

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred,
## data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.778 -10.062 2.941 7.955 11.139
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -721.333 449.542 -1.605 0.152618
## `Breast Circumference` 8.269 1.496 5.529 0.000879 ***
## RandPred -1.509 1.617 -0.933 0.381831
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.17 on 7 degrees of freedom
## Multiple R-squared: 0.843, Adjusted R-squared: 0.7981
## F-statistic: 18.79 on 2 and 7 DF, p-value: 0.001535



Which model is better?

Why not taking all predictors?

I Additional parameters must be estimated from data
I Predictive power decreased with too many predictors (cannot

be shown for this data set, because too few data points)
I Bias-variance trade-off



Bias-variance trade-off

I Assume, we are looking for optimum prediction

si =
q∑

r=1
β̂jr xijr

with q relevant predictor variables

I Average mean squared error of prediction si

MSE = n−1
n∑

i=1
E

[
(m(xi)− si)2

]
where m(.) denotes the linear function of the unknown true model.



Bias-variance trade-off II

I MSE can be split into two parts

MSE = n−1
n∑

i=1
(E [si ]−m(xi))2 + n−1

n∑
i=1

var(si)

where n−1 ∑n
i=1 (E [si ]−m(xi))2 is called the squared bias

I Increasing q leads to reduced bias but increased variance
(var(si))

I Hence, find si such that MSE is minimal
I Problem: cannot compute MSE because m(.) is not known

→ estimate MSE



Mallows Cp statistic

I For a given modelM, SSE (M) stands for the residual sum of
squares.

I MSE can be estimated as

M̂SE = n−1SSE (M)− σ̂2 + 2σ̂2|M|/n

where σ̂2 is the estimate of the error variance of the full model,
SSE (M) is the residual sum of squares of the modelM, n is the
number of observations and |M| stands for the number of
predictors inM

Cp(M) = SSE (M)
σ̂2 − n + 2|M|



Searching The Best Model

I Exhaustive search over all sub-models might be too expensive
I For p predictors there are 2p − 1 sub-models
I With p = 16, we get 6.5535× 104 sub-models

→ step-wise approaches



Forward Selection

1. Start with smallest sub-modelM0 as current model
2. Include predictor that reduces SSE the most to current model
3. Repeat step 2 until all predictors are chosen

→ results in sequenceM0 ⊆M1 ⊆M2 ⊆ . . . of sub-models

4. Out of sequence of sub-models choose the one with minimal Cp



Backward Selection

1. Start with full modelM0 as the current model
2. Exclude predictor variable that increases SSE the least from

current model
3. Repeat step 2 until all predictors are excluded (except for

intercept)

→ results in sequenceM0 ⊇M1 ⊇M2 ⊇ . . . of sub-models

4. Out of sequence choose the one with minimal Cp



Considerations

I Whenever possible, choose backward selection, because it
leads to better results

I If p ≥ n, only forward is possible, but then consider LASSO



Alternative Selection Criteria

I AIC or BIC, requires distributional assumptions.
I AIC is implemented in MASS::stepAIC()
I Adjusted R2 is a measure of goodness of fit, but sometimes is

not conclusive when comparing two models
I Try in exercise


