Context: Assume that we are working for a breeding organisation. We want to develop a new breeding program or improve an existing breeding program. We are interested in including a new trait in our breeding goal. The question is "what are the necessary steps to be able to include a new trait in an existing breeding goal". Examples for such new traits: Mastitis resistence (dairy cattle), fat coverage (beef cattle), more new traits in the future: Ketosis resistence, (dairy cattle), feed efficiency (dairy cattle), ...

Model Selection

Peter von Rohr

19 04 2021

Why Statistical Modelling?

Some people believe, they do not need statistics. For them it is enough to look at a diagram

Statistical Modelling Because ...

Two types of dependencies between physical quantities

- 1. deterministic
- 2. stochastic

Deterministic Versus Stochastic

deterministic

Law of gravity

stochastic

account for the different sources of variation that might occur

Stochastic systems can be quantified by statistical models

- Stochastic systems contains many sources of uncertainty
- statistical models can handle uncertainty
- components of a statistical model
	- **EXECUTE:** response variable $y \leftrightarrow y$ observations or measurements of a trait from animals
	- redictor variables x_1, x_2, \ldots, x_k
	- error term $e_{\overline{z}}$
	- \blacktriangleright function $m(x)$

 \sim other characteristics or properties from animals (age, sex, herd, season, breed, ...)

source of uncertainty

- riangleright predictor variables x_1, x_2, \ldots, x_k are transformed by function $m(x)$ to explain the response variable y
- \blacktriangleright uncertainty is captured by error term.
- \triangleright as a formula, for observation i

Which function $m(x)$?

What should we choose for m(x) to transform the predictors x?

lacktriangleright can be used as $m(x)$ is infinitely large restrict to linear functions of predictor variables

 b^*x^2 a*x $exn(x)$

The answer to the question what is a good choice for $m(x)$ depends on the problem and the nature of the data.

In genetic evaluation: the basic model from quantitative genetics tells that an phenotype is influenced by very many different genes and for the genetic evaluation (prediction breeding values) only the additive effects of a gene are relevant. ==> the linear function suits our problems in an optimal way.

• Question, about which predictor variables to use is answered by model selection

Why Model Selection

- Many predictor variables are available
- Are all of them relevant?
- > What is the meaning of relevant in this context?

No Relevance of Predictors

tbl_reg_aug\$RandPred

Relevance of Predictors

tbl_reg_aug\$'Breast Circumference'

Fitting a Regression Model

```
##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
##
      Min
               10 Median
                              30
                                     Max
## -39.163 -14.365 4.769 15.981 34.741
##
## Coefficients:
              Estimate Std. Error t value Pr(>\vert t \vert)##
## (Intercept) 1231.246 602.814 2.042 0.0754.
3.354 -1.221 0.2568## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
            \sqrt{C_{\theta}^2}##
## Residual standard error? 24.21 on 8 degrees of freedom
## Multiple R-squared: 0.1571, Adjusted R-squared: 0.05175
## F-statistic: 1.491 on 1 and 8 DF, p-value: 0.2568
```
Fitting a Regression Model II

$##$ Call: ## lm(formula = 'Body Weight' ~ 'Breast Circumference', data = tbl_reg_aug) ## ## Residuals: ## Min 10 Median 30 Max ## -17.3941 -6.5525 -0.0673 9.3707 13.2594 ## ## Coefficients: Estimate Std. Error t value $Pr(>\vert t \vert)$ ## ## (Intercept) -1065.115 255.483 -4.169 0.003126 ** ## `Breast Circumference` 8.673 1.420 6.108 0.000287 *** ## $---$ ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 11.08 on 8 degrees of freedom ## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014 ## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287

Multiple Regression

twology ## $##$ Call: ## lm(formula = 'Body Weight' ~ 'Breast Circumference' + RandPred. $data = tb1 \text{ reg aug}$ ## ## ## Residuals: ## Min 10 Median 30 Max $\#$ + -12.778 -10.062 2.941 7.955 11.139 $##$ ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -721.333 449.542 -1.605 0.152618 ## `Breast Circumference` 8.269 1.496 5.529 0.000879 *** ## RandPred -1.509 $1.617 - 0.933 0.381831$ ## $---$ ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 11.17 on 7 degrees of freedom ## Multiple R-squared: 0.843, Adjusted R-squared: 0.7981 ## F-statistic: 18.79 on 2 and 7 DF, p-value: 0.001535

Which model is better?

Why not taking all predictors?

- Additional parameters must be estimated from data
- Predictive power decreased with too many predictors (cannot be shown for this data set, because too few data points)

for a regression model: slope b

Bias-variance trade-off

Bias-variance trade-off

From the k available predictors, we select q (q < k)

Assume, we are looking for optimum prediction

dataset

with q relevant predictor variables

Average mean squared error of prediction s_i

Optimality criterion

$$
MSE = n^{-1} \sum_{i=1}^{n} E\left[\underbrace{(m(x_i) - s_i)^2}_{\text{transition from q predictor}} \right]
$$

where $m(.)$ denotes the linear function of the unknown true model.

 $s_i = \sum_{r=1}^n \hat{\beta}_{j_r} x_{ij_r}$

Bias-variance trade-off II

where $n^{-1}\sum_{i=1}^{n} (E[s_i] - m(x_i))^2$ is called the squared bias¹

- Increasing q leads to reduced bias but increased variance $\left(\text{var}(s_i) \right)$
- \blacktriangleright Hence, find s_i such that MSE is minimal
- ► Problem: cannot compute MSE because $m(.)$ is not known
- \rightarrow estimate MSE

Mallows C_n statistic

We do not know the true model $(m(x)) == > MSE$ cannot be computed exactly. But we want to estimate it from the data.

- For a given model M, $SSE(M)$ stands for the residual sum of squares.
- \triangleright MSE can be estimated as

the number of predictors included in the model (a)

$$
\widehat{\text{MSE}} = n^{-1} \text{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2 |\mathcal{M}|/n
$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model. $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , n is the number of observations and $|M|$ stands for the number of predictors in $\mathcal M$

optimal model means that Mallow Cp statistic is as small as possible

$$
C_p(\mathcal{M}) = \frac{SSE(\mathcal{M})}{\hat{\sigma}^2} - \frac{1}{n + 2|\mathcal{M}|}
$$

Searching The Best Model

- Exhaustive search over all sub-models might be too expensive
- For p predictors there are $2^p 1$ sub-models
- With $p = 16$, we get 6.5535×10^4 sub-models
- \rightarrow step-wise approaches

Forward Selection

- 1. Start with smallest sub-model \mathcal{M}_0 as current model
- Include predictor that reduces SSE the most to current model 2.
- 3. Repeat step 2 until all predictors are chosen
- \rightarrow results in sequence $\mathcal{M}_0 \subset \mathcal{M}_1 \subset \mathcal{M}_2 \subset \dots$ of sub-models
	- 4. Out of sequence of sub-models choose the one with minimal C_p

For k predictor variables: M_{\circ} , $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end$

Backward Selection

$$
\begin{array}{lll}\n\hline\n\uparrow & & \text{Full model: containing all k predictors} \\
\downarrow & & \text{M}_{b} : \underline{u} = \underline{x}_{0} + \frac{\beta_{1}}{2} \times \underline{x}_{1} + \frac{\beta_{2}}{2} \times \underline{y}_{2} \\
\downarrow & & \text{J} = \underline{x}_{0} \uparrow + \frac{\beta_{2}}{2} \times \underline{y}_{2} + \frac{\beta
$$

- 1. Start with full model \mathcal{M}_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- 3. Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0 \supset \mathcal{M}_1 \supset \mathcal{M}_2 \supset \dots$ of sub-models
	- 4. Out of sequence choose the one with minimal C_p

Considerations

- > Whenever possible, choose backward selection, because it leads to better results
- If $p \ge n$, only forward is possible, but then consider LASSO

Alternative Selection Criteria

When comparing two models, so far, we have used Mallow Cp

AIC: Akaike Information Criterion BIC: Bayes Information Criterion

- \triangleright AIC or BIC, requires distributional assumptions.
- \triangleright AIC is implemented in MASS: : stepAIC()
- Adjusted R^2 is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- \blacktriangleright Try in exercise