Context: Assume that we are working for a breeding organisation. We want to develop a new breeding program or
improve an existing breeding program. We are interested in including a new trait in our breeding goal. The
question is "what are the necessary steps to be able to include a new trait in an existing breeding goal".

Examples for such new traits: Mastitis resistence (dairy cattle), fat coverage (beef cattle), more new traits in the
future: Ketosis resistence, (dairy cattle), feed efficiency (dairy cattle), ...
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Why Statistical Modelling?

Some people believe, they do not need statistics. For them it is
enough to look at a diagram

group of animals that undergo a certain treatment
cortisol

A treatment

control

Note: no possibility to make a
quantitative statement, how big is a
difference and is it relevant?

»

Tt




Statistical Modelling Because . ..

Two types of dependencies between physical quantities

1. deterministic
2. stochastic



Deterministic Versus Stochastic
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Statistical Model

Stochastic systems can be quantified by statistical models

» stochastic systems contains many sources of uncertainty
> statistical models can handle uncertainty

» components of a statistical model
> response Variab|e yﬁ’—/ observations or measurements of a trait from animals

» predictor variables xi,x2, ..., Xk

> error term e L’/_,@other characteristics or properties from animals
. - (age, sex, herd, season, breed, ...)

» function m(x)

source of uncertainty



How Does A Statistical Model Work?

predictor variables: VA (K\ — % :j

—_—

» predictor variables xy, x>, ..., xx are transformed by function
m(x) to explain the response variable y

> uncertainty is captured by error term.

» as a formula, for observation i

Observatony ——+— —

Yi= m(Xi) + €

predictor variables
X




Which function m(x)?

What should we choose for m(x) to transform the predictors x?

G

» class of functions that can be used as m(x) is infinitely large
» restrict to linear functions of predictor varlables

b*x*2

The answer to the question what is a good choice for m(x) depends on the problem and the
nature of the data.

In genetic evaluation: the basic model from quantitative genetics tells that an phenotype is
influenced by very many different genes and for the genetic evaluation (prediction breeding
values) only the additive effects of a gene are relevant. ==> the linear function suits our problems
in an optimal way.



Which predictor variables?

dataset contains all
available
information

» Question, about which predictor variables to use is answered by
model selection



Why Model Selection

» Many predictor variables are available
» Are all of them relevant?
» What is the meaning of relevant in this context?



Example Dataset Yoy m(&>+e

T additional predictor

.
Animal | Breast Circumference Body Weight\ RandPred

1 I 471 179
2 177 463 178
3 178 481 184
4 179 470 183
5 179 496 181
6 180 491 177
7 181 518 178
8 182 511 180
9 183 510 180
10 184 541 177
\_) ‘/Lz \"‘X gy = \f\/\ { XBQ , XW \+f :fe:\g‘jairs‘tbetter than M2 ==> RandPred is not



No Relevance of Predictors
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Relevance of Predictors
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Fitting a Regression Model

##

## Call:

## 1m(formula = “Body Weight™ ~ RandPred, data = tbl_reg_aug)
##

## Residuals:

## Min 1Q Median 3Q Max

## -39.163 -14.365 4.769 15.981 34.741

##

## Coefficients:

#t Estimate Std. Error t value Pr(>|tl)

## (Intercept) 1231.246 602.814 2.042 0.0754 .

## RandPred -4.096 3.354 -1.221 0.2568

# ——- T

## Signif. codes: O '#x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#4 =

#i REEIHE;IJ;EEEEEFE~€EE5? 24.21 on 8 degrees of freedom

## Multiple R-squared: 0.1571, Adjusted R-squared: 0.05175
## F-statistic: 1.491 on 1 and 8 DF, p-value: 0.2568



Fitting a Regression Model Il

##

## Call:

## 1m(formula = “Body Weight™ ~ “Breast Circumference”, data = tbl_reg_aug)
##

## Residuals:

## Min 1Q Median 3Q Max

## -17.3941 -6.5525 -0.0673 9.3707 13.2594

##

## Coefficients:

#t Estimate Std. Error t value Pr(>|t])

## (Intercept) -1065.115 255.483 -4.169 0.003126 *x*
## “Breast Circumference- 8.673 £;§20 6.108 0.000287 x**x*
## -—-

## Signif. codes: O '#x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287



Multiple Regression

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

VQEWAJT wot
Call: — /T
Im(formula = “Body Weight™ ~ “Breast Circumference™ + RandPred,
data = tbl_reg_aug)
Residuals:
Min 1Q Median 3Q Max
-12.778 -10.062 2.941 7.955 11.139
Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -721.333 449.542 -1.605 0.152618
“Breast Circumference” 8.269 1.496  5.529 0.000879 *x*x*
RandPred -1.509 1.617 -0.933 0.381831
—_—
Signif. codes: O 'x¥x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11.17 on 7 degrees of freedom

Multiple R-squared: 0.843, Adjusted R-squared: 0.7981
F-statistic: 18.79 on 2 and 7 DF, p-value: 0.001535



Which model is better?

for a regression model: slope b

>

» Additional jparameters, must be estimated from data

» Predictive power decreased with too many predictors (cannot
be shown for this data set, because too few data points)

» Bias-variance trade-off

 Rond

f > RC e



Bias-variance trade-off

From the k available predictors, we select q (q < k)

» Assume, we are looking for optimum_prediction dataset

) -0 G«

q
si= > Bixi,
r=1"

with g relevant predictor variables

» Average mean squared error of prediction s;

Optimality criterion

MSE = n_l Z E |:(m(X’) _-—csi)2:| prediction from q predictor
~—

i=1 variables

where m(.) denotes the linear function of the Mtrue model.




Bias-variance trade-off Il

including all k predictors, converge to
0

> MSE can be split into two parts

A

MSE = h 'Y (E[s]~ m(x))

i=1

2.

4
where n=1 3", (E [s]] — m(x;))? is called the squared bias

> Increasing g leads to reduced bias but increased variance

(var(si))
» Hence, find s; such that MSE is minimal
» Problem: cannot compute MSE because m(.) is not known

— estimate MSE



Bias

var(si)

A number of
\¢ predictors

number of

predictors



M a | |OWS CP StatIStIC We do not know the true model (m(x)) ==> MSE cannot be computed
exactly. But we want to estimate it from the data.

» For a given model M, SSE(M) stands for the residual sum of
squares.

» MSE can be estimated as

the number of predictors included
in the model (q)

MSE = n~1SSE(M) — 62 + 2&2W/n

where 62 is the estimate of the error variance of the full model,
SSE(M) is the residual sum of squares of the model M, n is the

number of observations and | M| stands for the number of
predictors in M

number of observations in the dataset
optimal model means

SSE(M)
Il as possibl CP(M):T_n+2‘M|



Searching The Best Model

> Exhaustive search over all sub-models might be too expensive
» For p predictors there are 2P — 1 sub-models
» With p = 16, we get 6.5535 x 10* sub-models

— step-wise approaches



Forward Selection M- xe = sselVy

empty model, model with just an intercept

2 M “ = X% Thre S 55{

1. Start with smallest sub-model M as current model
2. Include predictor that reduces SSE the most to current model
3. Repeat step 2 until all predictors are chosen

— results in sequence Mg C My C M, C ... of sub-models

4. Out of sequence of sub-models choose the one with minimal C,

For k predictor variables: \)V\ ﬂ W
9 SRR
Lol

e (o C




Backward Selection

Full model: containing all k predictors
A A
2. My oy xfrhoen. R

J\ = A +Fq)<4+ tx(*i -
A

1. Start with full model Mj as the current model

2. Exclude predictor variable that increases SSE the least from
current model

3. Repeat step 2 until all predictors are excluded (except for
intercept)

— results in sequence Mg D My D My D ... of sub-models

4. Out of sequence choose the one with minimal C,



Considerations

» Whenever possible, choose backward selection, because it
leads to better results
» If p > n, only forward is possible, but then consider LASSO




Alternative Selection Criteria

When comparing two models, so far, we have used Mallow Cp

AIC: Akaike Information Criterion
BIC: Bayes Information Criterion

» AIC or BIC, requires distributional assumptions.
» AIC is implemented in MASS: : stepAIC()
» Adjusted R? is a measure of goodness of fit, but sometimes is

not conclusive when comparing two models
» Try in exercise



