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Genetic Variation

I Requirement for trait to be considered in breeding goal
I Breeding means improvement of next generation via selection

and mating
I Only genetic (additive) components are passed to offspring
I Selection should be based on genetic component of trait
I Selection only possible with genetic variation

→ genetic variation indicates how good characteristics are passed
from parents to offspring

→ measured by heritability h2 = σ2a
σ2p



Two Traits

−2 0 2

x
−2 0 2

x

no variation with variation



Problems

I Genetic components cannot be observed or measured
I Must be estimated from data
I Data are mostly phenotypic

→ topic of variance components estimation

I Model based, that means connection between phenotypic
measure and genetic component are based on certain model

p = g + e

with cov(g , e) = 0

I Goal: separate variation due to g (σ2a) from phenotypic
variation



Example of Variance Components Separation

I Estimation of repeatability
I Given repeated measurements of same trait at the same

animal
I Repeatability means variation of measurements at the same

animal is smaller than variation between measurements at
different animals
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Model

yij = µ+ ti + εij

where
yij measurement j of animal i
µ expected value of y
ti deviation of yij from µ attributed to animal i
εij measurement error



Estimation Of Variance Components

I E (ti) = 0

I σ2t = E (t2i ): variance component of total variance (σ2y ) which
can be attributed to the t-effects

I E (εij) = 0

I σ2ε = E (ε2ij): variance component attributed to ε-effects

I σ2y = σ2t + σ2ε

I Repeatability w defined as:

w = σ2t
σ2t + σ2ε

→ estimate of σ2t needed



Analysis Of Variance (ANOVA)

Effect df Sum Sq Mean Sq E (Mean Sq)
Bull (t) r − 1 SSQ(t) SSQ(t)/(r − 1) σ2ε + n ∗ σ2t
Residual (ε) N − r SSQ(ε) SSQ(ε)/(N − r) σ2ε

where
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Zahlenbeispiel

## Df Sum Sq Mean Sq F value Pr(>F)
## Bull 9 286.7 31.85 13.85 8.74e-07 ***
## Residuals 20 46.0 2.30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Setting expected values of Mean Sq equal to estimates of variance
components

σ̂2ε = 2.3 and σ̂2t = 31.85− 2.3
3 = 9.85

Repeatability

ŵ = σ̂2t
σ̂2t + σ̂2ε

= 0.81



Same Strategy for Sire Model

I Sire model is a mixed linear effects model with sire effects s as
random components

y = Xb + Zs + e

I In case where sires are not related, $var(s) = I ∗ σ2s
I From σ2s , we get genetic additive variance as σ2a = 4 ∗ σ2s



ANOVA

Effect Degrees of Freedom Sum Sq Mean Sq E(Mean Sq)
Sire (s|b) r − 1 SSQ(s|b) SSQ(s|b)/(r − 1) σ2e + k ∗ σ2s
Residual (e) N − r SSQ(e) SSQ(e)/(N − r) σ2e

with
k = 1

r − 1

[
N −

∑r
i=1 n2i
N

]



Maximum Likelihood (ML)

I Likelihood

L(θ) = f (y |θ)

I Normal distribution

L(θ) = (2π)−1/2nσ−n|H|−1/2∗exp
{
− 1
2σ2 (y − Xb)T H−1(y − Xb)

}

with var(y) = H ∗ σ2 and θT =
[

b σ2
]



Maximization of Likelihood

I Set λ = logL
I Compute partial derivatives of λ with respect to all unknowns

∂λ

∂b

∂λ

∂σ2

I Set partial derivatives to 0 and solve for unknowns
I Use solutions as estimates



Restricted Maximum Likelihood (REML)

I Problem with ML: estimate of σ2 depends on b → undesirable
I Do transformations Sy and Qy

(i) The matrix S has rank n − t and the matrix Q has rank t
(ii) The result of the two transformations are independent, that

means cov(Sy ,Qy) = 0 which is met when SHQT = 0
(iii) The matrix S is chosen such that E (Sy) = 0 which means

SX = 0
(iv) The matrix QX is of rank t, so that every linear function of

the elements of Qy estimate a linear function of b.



REML II

I From (i) and (ii) it follows that the likelihood L of y is the
product of the likelihoods of Sy (L∗) and Qy (L∗∗) that means

λ = λ∗ + λ∗∗

I Variance components are estimated from λ∗ which will then
be independent of b



Bayesian Estimation

I Proposed already in the 80’s
I Full implementation only in 1993
I Requirements:

I cheap computing and
I good pseudo-random number generators

I Bayesian estimation is based on conditional posterior
distribution of unknowns given the knowns

I Conditional posterior distribution is computed from prior
distribution of unknowns times the likelihood



Model

I Univariate Gaussian linear mixed model

y = Xb + Zu + e

where
y vector of observations (length n)
b vector of fixed effects (length p)
u vector of random breeding values

(length q)
e vector of random residuals (length n)
X n × p design matrix linking fixed ef-

fects to observations
Z n × q design matrix linking breeding

values to observations



Likelihood

I Data generating distribution

y |b, u, σ2e ∼ N (Xb + Zu, I ∗ σ2e )

where I is a n × n identity matrix and σ2e is the variance of the
random residuals.



Priors

I Prior distributions must be specified for all unknowns
I Unknowns in our example are: b, u, σ2e and σ2u
I Prior distribution for

I b is flat, i.e. p(b) ∝ c
I u Normal distribution as u|G , σ2u ∼ N(0,G ∗ σ2u)
I σ2e scaled inverse χ2:

p(σ2e |νe , s2e ) ∝ (σ2e )−νe/2−1exp(− 1
2νes2e /σ2e )

I σ2u : p(σ2u|νu, s2u ) ∝ (σ2u)−νu/2−1exp(− 1
2νus2u/σ2u)

I νe , νs , s2e and s2u are called hyper-parameters and must be
determined



Additional Terms

I Let

θT = (bT , uT ) = (θ1, θ2, . . . , θN)

θ−i = (θ1, θ2, . . . , θi−1, θi+1, . . . , θN)

I Further, let

sT = (s2u , s2e )

and

νT = (νu, νe)



Joint Posterior Density

The joint posterior distribution can be written as

p(θ, σ2u, σ2e |y , s, ν) ∝ p(θ) ∗ p(σ2u|νu, s2u) ∗ p(σ2e |νe , s2e ) ∗ p(y |θ, σ2e )



Fully Conditional Posterior Densities of θ

I Density of every single unknown component when setting all
other components as known

θi |y , θ−i , σ
2
u, σ

2
e , s, ν ∼ N (θ̃i , ṽi)

where θ̃i = (ri −
∑N

j=1,j 6=i wijθj)/wii and ṽi = σ2e/wii .

I vector r is the vector of right-hand side of MME
I matrix W is the coefficient matrix of MME



Fully Conditional Posterior Densities of σ2
e

I scaled inverted chi-square distribution for σ2e

σ2e |y , θ, σ2u, s, ν ∼ ν̃e s̃e
2χ−2ν̃e

I Parameters of the above distribution are defined as

ν̃e = n + νe

and

s̃e
2 =

[
(y − Xb − Zu)T (y − Xb − Zu) + νes2e

]
/ν̃e



Fully Conditional Posterior Densities of σ2
u

I scaled inverted chi-square distribution for σ2u

σ2u|y , θ, σ2e , s, ν ∼ ν̃u s̃u
2χ−2ν̃u

I Parameters of the above distribution are defined as

ν̃u = q + νu

and

s̃u
2 =

[
uT G−1u + νus2u

]
/ν̃u



Implementation

I Step 1: set starting values for θ, σ2e and σ2u
I Step 2: draw random number for each component θi of θ

from fully conditional distribution N (θ̃i , ṽi)
I Step 3: draw random number for σ2e from ν̃e s̃e

2χ−2ν̃e
I Step 4: draw random number for σ2u from ν̃u s̃u

2χ−2ν̃u
I Repeat steps 2-4 many times and store random numbers
I Step 5: compute means of random numbers to get Bayesian

estimates of unknowns θ, σ2e and σ2u


