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Context

* Breeding organisation wants to include a new trait into an aggregate genotype (breeding
goal), alternatively want to start a new breeding goal

* Last week: Model selection

* Assume: Genetic evaluation is done with a mixed linear effect model:

y=@+@s

Model selection determines which are relevant fixed effects (b) in our model. The reduction
of the number of fixed effects to the relevant set of fixed effects is nessesary to avoid the
bias-variance trade-off.

* Variance components estimation, is the topic that tells us how to estimate variance
components, and these are included in the variance-covariance matrices of the random

effects

var(u) , var(e)



Genetic Variation

» Requirement for trait to be considered in breeding goal

» Breeding means improvement of next generation via selection
and mating

Only genetic (additive) components are passed to offspring
Selection should be based on genetic component of trait

> Selection only possible with genetic variation

vy

— genetic variation indicates how good characteristics are passed
from parents to offspring

— measured by heritability h*> = ig;

(o2

o



parents are selected from a pool of selection

candidates, if their genetic potential is better
compared to the rest of the population.

Genetic potential is
the value of the
random sample of
alleles passed from
parents to
offspring. Value of
genetic sample is
estimated by the
predicted breeding
value.

population

parents of future
generation

offspring

Selection of parents from a
pool of candidates is only
possible, if there is variation in
the values of the genetic
potential. Without any
variation, all the values of the
genetic potentials would be
the same for all animals, and
hence no parents could be
selected.



Two Traits

density plots for the genetic potential of two traits
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Problems

Question: How to quantify the variation of the genetic potential of all animals in the
population for our trait of interest?

» Genetic components cannot be observed or measured
» Must be estimated from data
> Data are most'y phenot]{gic At the moment: Ignoring the possibility of collecing

genomic information for animals in our population

— topic of variance components estimation

» Model based, that means connection between phenotypic
measure and genetic component are based on certain model

Genetic Model:

pEte
g? quantify the part of the overall variation

in the phenotypic observation caused

with COV(g, e) =0 by variation in g

» Goal: separate variation due to g (02) from phenotypic
variation



Example of Variance Components Separation

» Estimation of repeatability

» Given repeated measurements of same trait at the same
animal

» Repeatability means variation of measurements at the same
animal is smaller than variation between measurements at
different animals




Repeatability dataset

Example: Weight, height, lactations

A —

Animal ID Measurement 1 Measurement 2 easurement 3
1
2 \
variation of measurement of the same trait within the
same animal
y_{i,j} : measurement j of animal i
variation of the measurement of the same trait
between across different animals
N
y_{N,1}




Repeatability Plot
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Model

where

where: animal_i stands for the effect of the
value of y_{ij} caused by animal i

Yij

ti
€ij

Assume: Measurements are influenced by
animal i and by other factors,

al i +e_{ij}

overall mean, E(y)

Yii = W+t + €

animal_i

measurement j of animal /

expected value of y

deviation of yj;; from  attributed to animal i
measurement error



Estimation Of Variance Components
Mecause, effects t_i are defined as deviations
~— — RS
> E(t) =0 o - Tl -l - o)
=0

> o7 = E(t?): variance component of total variance (07) which
can be attributed to the t-effects

> E(flg/ﬁ measurement errors are also deviations

> 02 = E(e;): variance component attributed to e-effects

> 0'}2, = 0'? + O'g ;1& Kj.\\ 2&3 compute the total variance

>

Repeatability w defined as: Sﬂ"vq’(j\_g = “5“(_ o

—» estimate of 02 needed




Model:
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Analysis Of Variance (ANOVA)

ANOVA-Table ﬁ Sum of Squares ‘/v Mean Sum of Squares
(;ffect ‘ df ‘m ‘ Mean Sq ‘ E(Mean Sq)

Bull (t) r—11] SSQ(t) | SSQ(t)/(r—1)| o?>+nxo?
Residual (¢) tr S5Q(e) | SSQ(e)/(N —r) 0?2
where Total number of observations

Z Zyu) —(izn:yu> /N

i=1j=1

sum over all squared measurements for animal i
2

1 r n

- E E Yij

n

i=1 \j=1

b spmn n{h



Dataset

Animal Measurements Sum of Squares
H
R 2 oY ¢
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Zahlenbeispiel InR: aov()

#i Df Sum Sq Mean Sq F value Pr(>F)

## Bull 9 286.7 31.85 13.85 8.74e-07 **x*

## Residuals 20 46.0

#H -— b Estimate of the residual variance component
## Signif. codes: O 'x*x*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Setting expected values of Mean Sq equal to estimates of variance
components [L T AT L e
[TSB% ) 3 -+ 4 L N

e

/ 31.85—-2.3
Estimate of t- variance component
Repeatability gA: o K
~2
W= 5 =081



Same Strategy for Sire Model

» Sire model is a mixed linear effects model with sire effects s as
random components

y=Xb+2Zs+e

» In case where sires are not related, $var(s) = / * o2

» From o2, we get genetic additive variance as 02 = 4 x o2



Dataset for sire model

Animal ID Sire Measurement 1 Measurement 2 Measurement 3
10 1 y_{1,10,1} y_{1,10,2}
1 1
12 2
13 2
2
3




ANOVA

Effect | Degrees of Freedom Sum Sq Mean Sq ‘\E Mean Sq)

Sire (s|b) ‘ r—1 SSQ(s|b) SSQ(s|b)/(r—1)
Residual (e) N—r S5Q(e)

with

Estimate of sire variance In cases where MSQ(e) > MSQ(s), the
estimate of the sire variance is negative.
Because variance components must be
positive, this estimate would be invalid



Maximum Likelihood (ML)

make assumptions about the distribution of the observations. Often, it is assumed that
observations follow a normal distribution

> Ll kel | hood is defined as the conditional density of the obserfations given the
parameter

L(0) = f(y10)

» Normal distribution

L(8) = (@n) 2rg " sexp { =y~ XB)TH Ay~ Xb)
g

with var(y) = H* o2 and 7 = [ b o? }

parameters of normal distribution



Maximization of Likelihood

> Set A = logl
» Compute partial derivatives of A with respect to all unknowns

()

ob

»n
Oo?

» Set partial derivatives to 0 and solve for unknowns
» Use solutions as estimates



Restricted Maximum Likelihood (REML)

with REML, we are looking at the likelihood of y corrected for b
fixed effects of the

fiedr \:f :gf*\ﬂﬁ* magel
Plor= 41514
» Problem with ML: estimate of o depends on b — undesirable

» Do transformations Sy and Qy Wi~ 5\3
u,= Gy

(i) The matrix S has rank n — t and the matrix Q has rank t
(ii) The result of the two transformations are independent, that
means cov(Sy, Qy) = 0 which is met when SHQT =0

(iii) The matrix S is chosen such that E(Sy) = 0 which means
SX=0

(iv) The matrix QX is of rank t, so that every linear function of
the elements of Qy estimate a linear function of b.



REML I

» From (i) and (ii) it follows that the likelihood L of y is the
product of the likelihoods of Sy (L*) and Qy (L**) that means

o= 05

» Variance components are estimated from A* which will then
be independent of b



Bayesian Estimation

v

Proposed already in the 80's
Full implementation only in 1993
Requirements:
» cheap computing and
» good pseudo-random number generators
Bayesian estimation is based on conditional posterior
distribution of unknowns given the knowns
Conditional posterior distribution is computed from prior
distribution of unknowns times the likelihood



Model

» Univariate Gaussian linear mixed model

where

y=Xb+Zu+e

vector of observations (length n)
vector of fixed effects (length p)
vector of random breeding values
(length q)

vector of random residuals (length n)
n x p design matrix linking fixed ef-
fects to observations

n x q design matrix linking breeding
values to observations



Likelihood

» Data generating distribution

y|b, u,ag ~ N(Xb + Zu, I * ag)

where [ is a n x n identity matrix and o2 is the variance of the
random residuals.



Priors

» Prior distributions must be specified for all unknowns
» Unknowns in our example are: b, u, 02 and o2
» Prior distribution for
> bis flat, i.e. p(b) xx ¢
» u Normal distribution as u|G, o2 ~ N(0, G  02)
> 02 scaled inverse x%:
p(02]ve, s2) oc (02) "> T exp(—3ves? [02)
> ol podlva, s5) oc (07) /> rexp(—vush/o})
» Ve, Us, 52 and s2 are called hyper-parameters and must be
determined



Additional Terms

> Let

QT = (bT, UT) — (01,92, r ,9/\/)

9—1' = (917027 .. 'aei—laei—f—la .. 'aeN)

» Further, let

us

and



Joint Posterior Density

The joint posterior distribution can be written as

p(0, 05, 02ly,s,v) o p(0) * p(ogvu, 55) * p(oelve, s2) * p(¥10, 02)



Fully Conditional Posterior Densities of 6

» Density of every single unknown component when setting all
other components as known

9i|y?0—i3033057571/NN(élia";i)
where él,' == (r,- - ZJN:L_/;ﬁl WUOJ)/W,, and \7,' == O'g/Wi,'.

» vector r is the vector of right-hand side of MME
» matrix W is the coefficient matrix of MME



Fully Conditional Posterior Densities of o2

» scaled inverted chi-square distribution for 2

2 2 v 2 =2
O-e|y39’0-u7531/’\’ VeSe X5,

» Parameters of the above distribution are defined as

Ue =N+ Ve

and

2= [(y = Xb— Zu)T(y — Xb — Zu) + ves?] /7



Fully Conditional Posterior Densities of o2

» scaled inverted chi-square distribution for o2

2 2 ~ &2 =2
Uu|y3070-e7531/’\’ VuSu X3,

» Parameters of the above distribution are defined as

Vp=qg+ vy

and

§2 = [uTG_lu + Vuslﬂ [V



Implementation

vy

vvyyvyy

Step 1: set starting values for §, 02 and o2

Step 2: draw random number for each component 6; of ¢
from fully conditional distribution AV (f;, V)

Step 3: draw random number for o2 from 17e5Ne2XEe2

Step 4: draw random number for 03 from VNuSNu2XEL,2

Repeat steps 2-4 many times and store random numbers
Step 5: compute means of random numbers to get Bayesian
estimates of unknowns @, o2 and o2



