Prediction of Breeding Values

Peter von Rohr

10.05.2021

What are breeding values

Definition: two times difference between offspring of a given parent from population mean

Practical Considerations

- \triangleright Definition of breeding value is based on biological fact that parent passes half of its alleles to offspring
- \blacktriangleright In practice, definition cannot be used
	- \triangleright most parents do not have enough offspring
	- \triangleright breeding values are needed before animals have offspring
	- \blacktriangleright different environmental factors not considered

Solution

- \triangleright Use genetic model to predict breeding values based on phenotypic observations
- Genetic model decomposes phenotypic observation (y_i) in different components

$$
y_i = \mu + u_i + d_i + i_i + e_i
$$

where μ is the general mean, u_i the breeding value, d_i the dominance deviation, i_i the epistasis effect and e_i the random error term.

Solution II

 \blacktriangleright For predicting breeding values d_i and i_j are often ignored, leading to a simplified version of the genetic model

$$
y_i = \mu + u_i + e_i
$$

 \blacktriangleright Expected values and variance-covariance matrix

$$
E\begin{bmatrix} y_i \\ u_i \\ e_i \end{bmatrix} = \begin{bmatrix} \mu \\ 0 \\ 0 \end{bmatrix}
$$

var
$$
\begin{bmatrix} y_i \\ u_i \\ e_i \end{bmatrix} = \begin{bmatrix} \sigma_y^2 & \sigma_u^2 & \sigma_e^2 \\ \sigma_u^2 & \sigma_u^2 & 0 \\ \sigma_e^2 & 0 & \sigma_e^2 \end{bmatrix}
$$

How to Predict Breeding Values

- ▶ Predicted breeding values (\hat{u}) are a function of the observed phenotypic data (y)
- $\rightarrow \hat{u} = f(y)$
	- \blacktriangleright What should $f()$ look like?
	- \triangleright Goal: Maximize improvement of offspring generation over parents

 $\rightarrow \hat{u}$ should be conditional expected value of true breeding value u given y:

$$
\hat{u}=E(u|y)
$$

Derivation

In Assume: multivariate normality of u and y and $E(u) = 0$, then

$$
\hat{u} = E(u|y) = E(u) + cov(u, y^T) * var(y)^{-1} * (y - E(y))
$$

= $E(u|y) = cov(u, y^T) * var(y)^{-1} * (y - E(y))$

- \triangleright \hat{u} consists of two parts
- 1. $(y E(y))$: phenotypic observations corrected for environmental effects
- 2. $\mathsf{cov}(u, y^{\mathsf{T}}) * \mathsf{var}(y)^{-1}$: weighting factor of corrected observation

Unbiasedness

Expected value $(E(\hat{u}))$

$$
E(\hat{u}) = E(cov(u, y^T) * var(y)^{-1} * (y - E(y)))
$$

= cov(u, y^T) * var(y)^{-1} * E(y - E(y))
= cov(u, y^T) * var(y)^{-1} * (E(y) - E(y)) = 0

 \triangleright With $E(u) = 0$, it follows $E(\hat{u}) = E(u) = 0$

Variance

 \triangleright var(\hat{u}) and $cov(u, \hat{u})$ important for quality of prediction

$$
var(\hat{u}) = var(cov(u, y^T) * var(y)^{-1} * (y - E(y)))
$$

\n
$$
= cov(u, y^T) * var(y)^{-1} * var(y - E(y))
$$

\n
$$
* var(y)^{-1} * cov(y, u^T)
$$

\n
$$
= cov(u, y^T) * var(y)^{-1} * cov(y, u^T)
$$

\n
$$
cov(u, \hat{u}) = cov(u, (cov(u, y^T) * var(y)^{-1} * (y - E(y)))^T)
$$

\n
$$
= cov(u, (y - E(y))^T) * var(y)^{-1} * cov(y, u^T)
$$

\n
$$
= cov(u, y^T) * var(y)^{-1} * cov(y, u^T) = var(\hat{u})
$$

Accuracy

 \blacktriangleright Measured by $r_{u,\hat{u}}$ **I** Recall $cov(u, \hat{u}) = var(\hat{u})$

$$
r_{u,\hat{u}} = \frac{cov(u, \hat{u})}{\sqrt{var(u) * var(\hat{u})}}
$$

$$
= \sqrt{\frac{var(\hat{u})}{var(u)}}
$$

Reliability ("Bestimmtheitsmass"): $B = r_{u,\hat{u}}^2$

Prediction Error Variance (PEV)

 \triangleright Variability of prediction error: $u - \hat{u}$

$$
var(u - \hat{u}) = var(u) - 2cov(u, \hat{u}) + var(\hat{u}) = var(u) - var(\hat{u})
$$

$$
= var(u) * \left[1 - \frac{var(\hat{u})}{var(u)}\right]
$$

$$
= var(u) * \left[1 - r_{u, \hat{u}}^2\right]
$$

 \triangleright Obtained from coefficient matrix of mixed model equations \triangleright Used to compute reliability

Conditional Density

- \triangleright Assessment of risk when using animals with predicted breeding values with different reliabilities quantified by $f(u|\hat{u})$
- In Multivariate normal density with mean $E(u|\hat{u})$ and variance $var(u|\hat{u})$

$$
E(u|\hat{u}) = E(u) + cov(u, \hat{u}^T) * var(\hat{u})^{-1} * (\hat{u} - E(\hat{u})) = \hat{u}
$$

$$
var(u|\hat{u}) = var(u) - cov(u, \hat{u}^T) * var(\hat{u})^{-1} * cov(\hat{u}, u^T)
$$

$$
= var(u) * \left[1 - \frac{cov(u, \hat{u}^T)^2}{var(u) * var(\hat{u})}\right]
$$

$$
= var(u) * \left[1 - r_{u, \hat{u}}^2\right]
$$

Confidence Intervals (CI)

- **►** Assume an error level α , this results in 100 $*(1 \alpha)$ %-CI
- **I** Typical values of α 0.05 or 0.01
- \triangleright With $\alpha = 0.05$, the 95%-CI gives interval around mean which covers a surface of 0*.*95

CI-Plot

CI Limits

 \triangleright lower limit l and upper limit m are given by

$$
l = \hat{u} - z * SEP
$$

\n
$$
m = \hat{u} + z * SEP
$$
\n(1)

 \triangleright z corresponds to quantile value to cover a surface of $(1 - \alpha)$ \triangleright Use R-function qnorm() to get value of z

Linear Mixed Effects Model

 \triangleright Use more realistic model for prediction of breeding values

$$
y = Xb + Zu + e
$$

where

- y vector of length *n* with observations
- b vector of length p with fixed effects
- u vector of length q with random breeding values
- e vector of length *n* with random error terms
- X $n \times p$ incidence matrix
- Z $n \times q$ incidence matrix

Expected Values and Variances

$$
E\begin{bmatrix} y \\ u \\ e \end{bmatrix} = \begin{bmatrix} Xb \\ 0 \\ 0 \end{bmatrix}
$$

var
$$
\begin{bmatrix} y \\ u \\ e \end{bmatrix} = \begin{bmatrix} ZGZ^{T} + R & ZG & 0 \\ GZ^{T} & G & 0 \\ 0 & 0 & R \end{bmatrix}
$$

Solutions

 \blacktriangleright Same as for simple model

$$
\hat{u} = E(u|y) = GZ^T V^{-1}(y - X\hat{b})
$$

with

$$
\hat{b} = (XT V-1 X)- XT V-1 y
$$

corresponding to the general least squares solution of b

Problem

- Solution for \hat{u} contains V^{-1} which is large and difficult to compute
- \blacktriangleright Use mixed model equations

$$
\begin{bmatrix} X^{T}R^{-1}X & X^{T}R^{-1}Z \ Z^{T}R^{-1}X & Z^{T}R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{T}R^{-1}y \\ Z^{T}R^{-1}y \end{bmatrix}
$$

Sire Model

$$
y = Xb + Zs + e
$$

where s is a vector of length q_s with all sire effects.

$$
var(s) = A_s * \sigma_s^2
$$

where $A_{\mathfrak{s}}$: numerator relationship considering only sires

Animal Model

$$
y = Xb + Za + e
$$

where a is a vector of length q_a containing the breeding values

$$
var(a)=A\sigma_a^2
$$

where A is the numerator relationship matrix