So far:

* Model selection: determined the fixed effects in the mixed linear model

* Variance components estimation: genetic component of a trait showed variation, because only for traits with measureable variation, selection of parents can done

* Prediction of breeding values: ranking criterion for selection candidates, and based on this criterion, parents will be selected from the population

Prediction of Breeding Values

Peter von Rohr

10.05.2021

What are breeding values

Definition: two times difference between offspring of a given parent from population mean

Practical Considerations

- \triangleright Definition of breeding value is based on biological fact that parent passes half of its alleles to offspring
- In practice, definition cannot be used
	- most parents do not have enough offspring
	- ▶ breeding values are needed before animals have offspring
	- In different environmental factors not considered

Selection should be done as early as possible, otherwise the generation interval is increased and selection response per year is reduced

Solution

- ► Use genetic model to predict breeding values based on phenotypic observations
- Genetic model decomposes phenotypic observation (y_i) in different components known non-genetic environmental factors

$$
y_i = \underbrace{\mu}_{\mu} + \underbrace{u_i + d_i + i_j}_{\text{deflection}}
$$
genetic factors

where μ is the general mean, u_i the breeding value, d_i the dominance deviation, i_i the epistasis effect and e_i the random error term.

Solution II

How to Predict Breeding Values

- riangleright Predicted breeding values (\hat{u}) are a function of the observed phenotypic data (y)
- $\rightarrow \hat{u} = f(y)$
	- \triangleright What should $f()$ look like?
	- Goal: Maximize improvement of offspring generation over parents

 \rightarrow \hat{u} should be conditional expected value of true breeding value u given y : Henderson (1963): using conditional expected

> phenotypic observation, response to selection from a parent to an offspring generation is $\hat{u} = E(u|y)$ maximized. \overrightarrow{v} true breeding values, are unknown predicted breeding value

value of the true breeding value given the

Derivation

- Assume: multivariate normality of u and y and $E(u) = 0$, then $E[u]=\emptyset$ * intercept slope factor observations $\hat{u} = E(u|v) = \overline{E(u)} + cov(u, v^{\mathsf{T}}) * var(v)^{-1} * (v - E(v))$ $= E(u|y) = cov(u, y^T) * var(y)^{-1} * (y - E(y))$ \triangleright \hat{u} consists of two parts known non-genetic environmental factors 1. $(y - E(y))$: phenotypic observations corrected for environmental effects
- 2. $cov(u, y^T) * var(y)^{-1}$: weighting factor of corrected observation interpreted as regression slope

So far: Two different definitions of a predicted breeding value

2: Based on genetic model

1: From biological facts for animal i: $\hat{V}_{i} = 2 \cdot (u_i - M)$
2: Based on genetic model $\hat{V}_{i} = \mathbb{E} \left[u_i \cdot \bigcup_{M} J \right]$

Assumptions:

* genetic model

* multivariate normality of u and y

Unbiasedness

 $\overline{}$ unbiasedness ok

variation of predicted breeding value should be as close as possible to the variance of the true breeding value: var(u)

Variance

 \triangleright var(\hat{u}) and $cov(u, \hat{u})$ important for quality of prediction

$$
\begin{array}{l}\n\text{var}(\hat{u}) = \text{var}(\frac{\hat{u}}{\text{cov}(u, y^T)} \times \text{var}(y)^{-1} \times (y - E(y))) \\
= \text{cov}(u, y^T) \times \text{var}(y)^{-1} \times \text{var}(y - E(y)) \\
\text{var}(y)^{-1} \times \text{var}(y) = \text{var}(y) \\
\text{var}(y)^{-1} \times \text{cov}(y, u^T) \qquad \text{for } y \in \mathbb{N} \\
\text{var}(y)^{-1} \times \text{cov}(y, u^T) \qquad \text{for } y \in \mathbb{N} \\
= \text{cov}(u, y^T) \times \text{var}(y)^{-1} \times \text{cov}(y, u^T) \qquad \text{for } y \in \mathbb{N} \\
\text{cov}(u, \hat{u}) = \text{cov}(u, (\text{cov}(u, y^T) \times \text{var}(y)^{-1} \times (y - E(y)))^T) \\
= \text{cov}(u, (y - E(y))^T) \times \text{var}(y)^{-1} \times \text{cov}(y, u^T) \\
= \text{cov}(u, y^T) \times \text{var}(y)^{-1} \times \text{cov}(y, u^T) = \text{var}(\hat{u})\n\end{array}
$$

Accuracy

Every prediction is associated with a certain error

 \blacktriangleright Variability of prediction error: $u - \hat{u}$

$$
var(u - \hat{u}) = var(u) - 2cov(u, \hat{u}) + var(\hat{u}) = var(u) - var(\hat{u})
$$

$$
= var(u) * \left[1 - \frac{var(\hat{u})}{var(u)}\right]
$$

$$
= var(u) * \left[1 - r_{u, \hat{u}}^2\right]
$$

$$
var(u) \cdot \left[1 - \sum_{\nu \in \mathcal{U}} r_{\nu, \hat{u}}^2\right]
$$

 \triangleright Obtained from coefficient matrix of mixed model equations Used to compute reliability

Conditional Density

Once a predicted breeding value is available, what is the distribution of the true breeding value given the predicted breeding value

- Assessment of risk when using animals with predicted breeding values with different reliabilities quantified by $f(u|\hat{u})$
- Multivariate normal density with mean $E(u|\hat{u})$ and variance $var(u|\hat{u})$

$$
E(u|\hat{u}) = E(u) + cov(u, \hat{u}^T) * var(\hat{u})^{-1} * (\hat{u} - E(\hat{u})) = \underline{\hat{u}}
$$

\n
$$
var(u|\hat{u}) = var(u) - cov(u, \hat{u}^T) * var(\hat{u})^{-1} * cov(\hat{u}, u^T)
$$

\n
$$
= var(u) * \left[1 - \frac{cov(u, \hat{u}^T)^2}{var(u) * var(\hat{u})}\right]
$$

\n
$$
= var(u) * \left[1 - r_{u, \hat{u}}^2\right] = \text{ker}(u)
$$

Once we have a predicted breeding value: u

What is the distribution of the true breeding value given the predicted breeding value

Confidence Intervals (CI)

Given a predicted breeding value, we can answer the question: What is the 95% confidence interval for the true breeding value

- Assume an error level α , this results in $100 * (1 \alpha)\%$ -CI
- \blacktriangleright Typical values of α 0.05 or 0.01
- With $\alpha = 0.05$, the 95%-CI gives interval around mean which covers a surface of 0.95

CI-Plot

CI Limits

For 95% confidence interval (two-sided)

 $1 - 4 = 0.35 \pm 20.05$ $\frac{9}{2}$ = 0.025

 \triangleright lower limit l and upper limit m are given by

$$
l = \hat{u} - z * \underline{SEP}
$$

\n
$$
m = \hat{u} + z * SEP
$$
 (1)

 \triangleright z corresponds to quantile value to cover a surface of $(1 - \alpha)$ \triangleright Use R-function qnorm() to get value of z $\overline{q_{\text{norm}}}\left(\sqrt{1-\frac{9}{2}}\right) = p \cdot z - v \cdot q \cdot l \cdot q$
 $\Rightarrow 35\% + q_{\text{norm}}(0.55) = p \cdot z$

Linear Mixed Effects Model

Genetic model for a complete population and using matrix-vector notation

 \sim \vee ; = μ + \vee ; + e ; -> Use more realistic model for prediction of breeding values $V = Xb + Zu + e$

where

- y vector of length n with observations
- $\mathbf b$ vector of length p with fixed effects
- vector of length q with random breeding values \boldsymbol{u}
- vector of length n with random error terms e
- X $n \times p$ incidence matrix
- Z $n \times q$ incidence matrix

Expected Values and Variances

$$
E\begin{bmatrix} y \\ u \\ e \end{bmatrix} = \begin{bmatrix} Xb \\ 0 \\ 0 \end{bmatrix}
$$

var
$$
\begin{bmatrix} y \\ u \\ e \end{bmatrix} = \begin{bmatrix} ZGZ^{T} + R & ZG & 0 \\ GZ^{T} & G & 0 \\ 0 & 0 & R \end{bmatrix}
$$

Solutions

with

corresponding to the general least squares solution of b

Problem

- Solution for \hat{u} contains V^{-1} which is large and difficult to compute
- \triangleright Use mixed model equations

$$
\begin{bmatrix} X^{T}R^{-1}X & X^{T}R^{-1}Z \ Z^{T}R^{-1}X & Z^{T}R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{T}R^{-1}y \\ Z^{T}R^{-1}y \end{bmatrix}
$$

Sire Model

$$
y = Xb + Zs + e
$$

where s is a vector of length q_s with all sire effects.

$$
var(s) = A_s * \sigma_s^2
$$

where A_s : numerator relationship considering only sires

Animal Model

$$
y = Xb + Za + e
$$

where a is a vector of length q_a containing the breeding values

$$
\mathsf{var}(a) = A \sigma_a^2
$$

where A is the numerator relationship matrix