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Problem 1: Linear Regression

Use the example dataset from the course notes which is used to demonstrate how to fit a regression of the
response variable body weight (BW) on the predictor variable breast circumference (BC). The data is
shown in the table below.

Table 1: Dataset for Regression of Body Weight on Breast Circum-
ference for ten Animals

Animal Breast Circumference Body Weight
1 176 471
2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
8 182 511
9 183 510
10 184 541

Your Tasks

• Compute the regression coefficient using matrix computations. Use the function solve() in R to
compute the inverse of a matrix.

• Verify your results using the function lm in R.

Solution

• The regression coefficient b̂LS is computed as

b̂LS = (XTX)−1XT y

• The matrix X is

## [,1] [,2]
## [1,] 1 176
## [2,] 1 177
## [3,] 1 178
## [4,] 1 179
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## [5,] 1 179
## [6,] 1 180
## [7,] 1 181
## [8,] 1 182
## [9,] 1 183
## [10,] 1 184

• The vector y is

## [1] 471 463 481 470 496 491 518 511 510 541

• The regression coefficient is then computed as

## * Intercept: -1065.115

## * Slope: 8.673235

• The variance component of the errors is computed as

σ̂2 = 1
n− p

n∑
n=1

r2
i

## * Error Variance: 122.7997

## * Error SD: 11.0815

Verifying the results using lm()

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287

Problem 2: Breeding Values

During the lecture the computation of the breeding values for a given genotype was shown for a completely
additive locus which means the genotypic value d of the heterozygous genotypes is 0. In this exercise, we
want to compute the general solution for the breeding values of all three genotypes under a monogenic model.
The term monogenic model is equivalent to a single-locus model.

We are given a single locus G with two alleles G1 and G2 which are closely linked to a QTL for a trait
of interest. We assume that the population is in Hardy-Weinberg equilibrium at the given locus G. It is
important to note here, that the breeding values under this single-locus model are not the same as the direct
genomic breeding values. In one of the following exercises, we will come back to this difference.
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The allele frequencies are

Allele Frequency
G1 p
G2 q

Allele G1 is the one with a positive effect on the trait of interest. The genotypic values are given in the
following table.

Genotype Value
G1G1 a
G1G2 d
G2G2 −a

Your Task

• Compute the breeding values for all three genotypes G1G1, G1G2 and G2G2.
• Verify the results presented in the lecture by setting d = 0 in the breeding values you computed before.

Solution

The breeding value for an animal with a given genotype is defined as two times the deviation of a large
number of progeny from the population mean. Based on that definition, we first compute the population
mean

µ = f(G1G1) ∗ a+ f(G1G2) ∗ d+ f(G2G2)(−a)
= p2 ∗ a+ 2pq ∗ d− q2 ∗ a
= (p2 − q2) ∗ a+ 2pqd
= (p− q)a+ 2pqd (1)

For each of the genotypes G1G1, G1G2 and G2G2 we compute the expected genotypic value of the offspring.
Taking the difference from the expected genotypic value of the offspring of animals with the different genotypes
and multiply that differerence with two yields the breeding value.

Genotype G1G1: The following table gives an overview over the genotype frequencies of the offspring of a
parent with a G1G1 genotype

Sire
G1 G2

Dam
G1 f(G1G1) = p f(G1G2) = q

The expected genotypic value µ11 of the offspring of G1G1

µ11 = p ∗ a+ q ∗ d (2)

The breeding value BV11 of an animal with genotype G1G1
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BV11 = 2 ∗ (µ11 − µ)
= 2 ∗ (pa+ qd− [(p− q)a+ 2pqd])
= 2 ∗ (pa+ qd− pa+ qa− 2pqd)
= 2q ∗ (a+ (1 − 2p)d)
= 2q ∗ (a+ (q − p)d)
= 2qα (3)

Genotype G1G2: The table with the offspring genotype frequencies

Sire
G1 G2

Dam
G1 f(G1G1) = 0.5p f(G1G2) = 0.5q
G2 f(G2G1) = 0.5p f(G2G2) = 0.5q

The expected genotypic value µ12 of the offpring of a G1G2 parent is

µ12 = 0.5p ∗ a+ 0.5(p+ q) ∗ d+ 0.5q ∗ (−a) = 0.5pa+ 0.5d− 0.5qa (4)

The breeding value BV12 is

BV12 = 2 ∗ (µ12 − µ)
= 2 ∗ (0.5pa+ 0.5d− 0.5qa− [(p− q)a+ 2pqd])
= 2 ∗ (0.5qa− 0.5pa+ 0.5d− 2pqd)
= (q − p)a+ (1 − 4pq)d
= (q − p)a+ (p2 + q2 + 2pq − 4pq)d
= (q − p)a+ (p− q)2d

= (q − p)(a+ (q − p)d)
= (q − p)α (5)

Genotype G2G2: The table with the offspring genotype frequencies

Sire
G1 G2

Dam
G2 f(G2G1) = p f(G2G2) = q

The expected genotypic value µ22 of the offpring of a G2G2 parent is

µ22 = p ∗ d+ q ∗ (−a) = pd− qa (6)

The breeding value BV12 is
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BV22 = 2 ∗ (µ22 − µ)
= 2 ∗ (pd− qa− [(p− q)a+ 2pqd])
= 2 ∗ (pd− pa− 2pqd)
= 2 ∗ (−pa+ p(1 − 2q)d)
= −2p ∗ (a+ (q − p)d)
= −2pα (7)

In summary the breeding values are

Genotype Breeding Value
G1G1 2qα
G1G2 (q − p)α
G2G2 −2pα

All breeding values depend on α = a+ (q − p)d. For purely additive loci, d = 0 and therefore α = a. Then
the breeding values simplify to

Genotype Breeding Value
G1G1 2qa
G1G2 (q − p)a
G2G2 −2pa

5



Problem 3: Linkage Between SNP and QTL

In a population of breeding animals, we are given a trait of interest which is determined by a QTL Q
on chromosome 1. QTL Q is modelled as a bi-allelic QTL with alleles Q1 and Q2. Furthermore we have
genotyped our population for two SNPs R and S with two alleles each. One of the SNPs is on chromosome 1
and is closely linked to Q. The other SNP is on chromosome 2 and is unlinked. Figure 1 shows the situation
in a diagram.

Figure 1: Linkage Between an SNP and a QTL and an independent SNP on a different Chromosome

Based on the following small dataset, determine which of the two SNPs R and/or S is linked to QTL Q.

From the above table it might be difficult to decide which SNP is linked to the QTL. Plotting the data may
help. Showing the observations as a function of the genotypes leads to Figure 2.

Your Tasks

• Determine which of the two SNPs R or S is closely linked to the QTL
• Estimate a value for a obtained based on the data
• Try to fit a linear model through the genotypes that SNP which is linked to the QTL using the lm()

function. The genotype data is available from

https://charlotte-ngs.github.io/gelasmss2021/data/asm_w02_ex01_p02_genodatafile.csv
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Table 6: Dataset showing linkage between SNP and QTL

SNP R SNP S Observation
R2R2 S1S1 23.17
R2R2 S2S2 -27.04
R1R2 S1S2 -2.79
R1R2 S2S2 -19.54
R1R2 S2S2 -24.05
R1R2 S1S1 25.84
R1R2 S1S2 -0.36
R1R1 S2S2 -23.34
R2R2 S1S2 1.38
R1R1 S1S2 -1.60
R1R2 S1S2 -2.97
R2R2 S1S2 -1.39
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Figure 2: Observations Grouped by SNP Genotypes
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Solution

1. Based on the plot shown above, the SNP S is linked to the QTL.
2. Fit the linear model of the observations

s_asm_w02_ex01_p02_genodatafile <-
"https://charlotte-ngs.github.io/gelasmss2021/data/asm_w02_ex01_p02_genodatafile.csv"

tbl_all_data_ascii <- readr::read_csv(file = s_asm_w02_ex01_p02_genodatafile)

##
## -- Column specification --------------------------------------------------------
## cols(
## `SNP R` = col_character(),
## `SNP S` = col_character(),
## Observation = col_double()
## )
tbl_all_data_ascii$`SNP R` <- as.factor(tbl_all_data_ascii$`SNP R`)
tbl_all_data_ascii$`SNP S` <- as.factor(tbl_all_data_ascii$`SNP S`)
lm_fit_geno_snp_r <- lm(Observation ~ 0 + `SNP R`, data = tbl_all_data_ascii)
summary(lm_fit_geno_snp_r)

##
## Call:
## lm(formula = Observation ~ 0 + `SNP R`, data = tbl_all_data_ascii)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.1517 -7.0258 -0.9758 6.1017 25.0783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## `SNP R`R1R1 2.2300 9.5965 0.232 0.821
## `SNP R`R1R2 0.8817 6.7858 0.130 0.899
## `SNP R`R2R2 -16.7767 9.5965 -1.748 0.114
##
## Residual standard error: 16.62 on 9 degrees of freedom
## Multiple R-squared: 0.2579, Adjusted R-squared: 0.01048
## F-statistic: 1.042 on 3 and 9 DF, p-value: 0.4198
lm_fit_geno_snp_s <- lm(Observation ~ 0 + `SNP S`, data = tbl_all_data_ascii)
summary(lm_fit_geno_snp_s)

##
## Call:
## lm(formula = Observation ~ 0 + `SNP S`, data = tbl_all_data_ascii)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2367 -1.2575 -0.8383 0.8238 4.9233
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## `SNP S`S1S1 24.4750 1.7851 13.711 2.46e-07 ***
## `SNP S`S1S2 0.6967 1.0306 0.676 0.516
## `SNP S`S2S2 -22.8700 1.2623 -18.118 2.17e-08 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.525 on 9 degrees of freedom
## Multiple R-squared: 0.9829, Adjusted R-squared: 0.9772
## F-statistic: 172.2 on 3 and 9 DF, p-value: 2.887e-08

From the resulting model fit, it becomes clear, that SNP R has a bad fit whereas SNP S fits the data much
better.
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