
Applied Statistical Methods - Solution 6

Peter von Rohr

2021-03-29

Problem 1: Example with LASSO

The file available at https://charlotte-ngs.github.io/gelasmss2021/data/asm_ex06_p01_lasso.txt contains a
dataset with genotypes from 100 SNP-Loci. In addition to the genomic information, the dataset also holds
observations of a certain trait for 50 animals. The dataset can be read into a matrix in R with the following
statement.

mat_lasso_data <- matrix(scan("https://charlotte-ngs.github.io/gelasmss2021/data/asm_ex06_p01_lasso.txt"), nrow = 50, byrow =

TRUE)

Let us have a look at the first 5 rows and the first 5 columns of the matrix that stores the dataset.
mat_lasso_data[1:n_nr_row,1:n_nr_col]

[,1] [,2] [,3] [,4] [,5]
[1,] -40.39872 -1 0 -1 -1
[2,] -46.35871 -1 -1 -1 0
[3,] -33.60278 -1 -1 -1 -1
[4,] -48.47177 0 -1 -1 -1
[5,] -38.82089 -1 -1 0 -1

From this output, we can see that the observations of all animals can be found in the first column of the data
matrix mat_lasso_data. In columns 2 to 101 of the data matrix there are the genotypes of all SNP loci.
The linear model is fitted with LASSO using the function glmnet() from the package glmnet. The SNP
genotypes are used as explanatory variables and the observations are the response variables.

Your Tasks

• Use the following R-Statement to estimate the SNP-effects using LASSO
require(glmnet)
fitsnp <- glmnet(x = mat_lasso_data[, -1], y = mat_lasso_data[, 1])

• Visualize the dependency between the value of the penalty term λ and the number of explanatory
variables which are not 0.

plot(fitsnp, xvar = "lambda", label = TRUE)

• Use a cross-validation to determine the value of λ.
cvfitsnp <- cv.glmnet(x = mat_lasso_data[, -1], y = mat_lasso_data[, 1])

• Show the results of the cross-validation in a plot using the function plot().
plot(cvfitsnp)

1

https://charlotte-ngs.github.io/gelasmss2021/data/asm_ex06_p01_lasso.txt

• In the plot of the cross-validation results there are two dashed lines which both indicated special values
for λ. The first value is the minimum of all λ-values and the second is the one that sets the most
explanatory variables to 0 with the restriction that the sum of squared errors is not further away than
one standard deviation from its minimum. The two λ-values are obtained with

cvfitsnp$lambda.min
cvfitsnp$lambda.1se

• Find all coefficients which are not 0 for both λ-values and compare them to the true values taken from
the simulation.

coefmin <- coef(cvfitsnp, s = "lambda.min")
(cofminnz <- coefmin[coefmin[, 1] != 0,])

coef1se <- coef(cvfitsnp, s = "lambda.1se")
(coef1senz <- coef1se[coef1se[, 1] != 0,])

The true SNP-positions from the simulation are:
(vec_sign_snp_idx <- c(73,54,26,30,7))

[1] 73 54 26 30 7

Solution

The linear model is fitted with the following statement.
require(glmnet)

Loading required package: glmnet

Loading required package: Matrix

Loaded glmnet 4.1-1
fitsnp <- glmnet(x = mat_lasso_data[, -1], y = mat_lasso_data[, 1])

The result of the model fit is a glmnet-object. The resuling object is best viewed with the following plot.
plot(fitsnp, xvar = "lambda", label = TRUE)

2

−2 −1 0 1 2

−
2

0
2

4
6

8
10

Log Lambda

C
oe

ffi
ci

en
ts

38 24 9 5 1

1

5

7

8

914

15

16

18

2023

24

25

26

28
29

30

35

3638
42

43

49

5354
58

65
68

69

70

72

73

747677

81

8485

86

87

88

89
9192

9399

The cross-validation is done with the function cv.glmnet().
cvfitsnp <- cv.glmnet(x = mat_lasso_data[, -1], y = mat_lasso_data[, 1])

The results can be shown with the following plot.
plot(cvfitsnp)

−2 −1 0 1 2

50
10

0
15

0
20

0

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

43 41 35 33 26 20 17 10 6 6 5 5 5 4 3 2 1

3

The special λ-values indicated with the dashed lines can be obtained with
cvfitsnp$lambda.min

[1] 0.6055047
cvfitsnp$lambda.1se

[1] 1.335217

The coefficients corresponding to the SNP-positions which are not 0 for both λ-values are obtained with
coefmin <- coef(cvfitsnp, s = "lambda.min")
(cofminnz <- coefmin[coefmin[, 1] != 0,])

(Intercept) V5 V7 V25 V26 V30 V35 V42 V49
-16.8330086 0.5072102 10.6742390 -0.8703407 6.8328616 7.7226777 0.9089356 1.0749044 -0.8214637
V54 V68 V72 V73 V77 V89 V91 V92 V99
0.3374570 -0.7846051 -0.4578090 8.5953061 -0.4892674 1.6117772 0.3182998 0.5349037 1.6134420
coef1se <- coef(cvfitsnp, s = "lambda.1se")
(coef1senz <- coef1se[coef1se[, 1] != 0,])

(Intercept) V7 V26 V30 V42 V73 V99
-21.2800339 10.0924010 5.5610656 6.7146525 0.3502727 7.2744381 1.2547133

The SNP-positions are extracted from the coefficients as follows
(s_snp_pos_min <- gsub(pattern = "V", replacement = "",

setdiff(names(cofminnz), "(Intercept)"),
fixed = TRUE))

[1] "5" "7" "25" "26" "30" "35" "42" "49" "54" "68" "72" "73" "77" "89" "91" "92" "99"

The match between the estimated and the true SNP-positons using minimal λ are
(vec_match_snp_min <- intersect(s_snp_pos_min, as.character(vec_sign_snp_idx)))

[1] "7" "26" "30" "54" "73"
(s_snp_pos_1senz <- gsub(pattern = "V", replacement = "",

setdiff(names(coef1senz), "(Intercept)"),
fixed = TRUE))

[1] "7" "26" "30" "42" "73" "99"

The match between the estimated and the true SNP-positons using the SE-λ are
(vec_match_snp_1senz <- intersect(s_snp_pos_1senz, as.character(vec_sign_snp_idx)))

[1] "7" "26" "30" "73"

Problem 2: Bayesian Regression Analysis

Given is the earlier used dataset of breast circumference and body weight.

Table 1: Dataset for Regression of Body Weight on Breast Circum-
ference for ten Animals

Animal Breast Circumference Body Weight
1 176 471

4

2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
8 182 511
9 183 510
10 184 541

The model that is used is a simple linear regression model given by

yi = β0 + β1 ∗ xi + εi

.

where yi corresponds to the body weight of animal i, xi is the breast circumference of animal i, β0 is the
unknown intercept and β1 is the unknown regression coefficient. For reasons of simplicity, we assume the
residual variance σ2 to be known. For the later computations, we insert the estimate that is obtained from
the lm() function. This value corresponds to σ2 = 122.8.

Bayesian Estimation Of Unknowns

As already mentioned during the lecture, Bayesian estimates of unknowns are based on the posterior
distribution of the unknowns given the knowns. For our regression model the unknowns correspond to

β =
[
β0
β1

]
The posterior distribution of the unknowns given the knowns is f(β|y). Using Bayes’ Theorem we can write
f(β|y) as

f(β|y) = f(β, y)
f(y)

= f(y|β)f(β)
f(y)

∝ f(y|β)f(β)

When we do not have any specific prior knowledge about β, the prior distribution f(β) for the unknown β is
set to a constant. Therefore we can write

f(β|y) ∝ f(y|β)f(β)
∝ f(y|β)

Assuming a normal distribution for the data causes the likelihood f(y|β) to be a multivariate normal
distribution.

5

f(β|y) ∝ f(y|β)

= (2πσ2)−n/2exp

{
−1

2
(y −Xβ)T (y −Xβ)

σ2

}
(1)

The above expression (1) is an n− dimensional normal distribution with expected value Xβ and variance-
covariance matrix corresponding to Iσ2. But because we have just two unknowns β0 and β1 the posterior
distribution f(β|y) must have two dimensions and not n. The following re-arrangement can solve this problem.
Let us set the variable Q to

Q = (y −Xβ)T (y −Xβ) = yT y − 2yTXβ + βT (XTX)β

Introducing the least squares estimate β̂ = (XTX)−1XT y into the above equation by replacing yTX with
β̂T (XTX) results in

Q = yT y − 2β̂T (XTX)β + βT (XTX)β = yT y + (β − β̂)T (XTX)(β − β̂)− β̂T (XTX)β̂

Inserting this last result back into (1) gives

f(β|y) ∝ f(y|β)

= (2πσ2)−n/2exp

{
−1

2
(y −Xβ)T (y −Xβ)

σ2

}
= (2πσ2)−n/2exp

{
−1

2
yT y + (β − β̂)T (XTX)(β − β̂)− β̂T (XTX)β̂

σ2

}

= (2πσ2)−n/2

[
exp

{
−1

2
yT y

σ2

}
∗ exp

{
−1

2
(β − β̂)T (XTX)(β − β̂)

σ2

}
∗ exp

{
−1

2
−β̂T (XTX)β̂

σ2

}]

∝ exp

{
−1

2
(β − β̂)T (XTX)(β − β̂)

σ2

}
(2)

The last proportionality results from the fact that only the term depending on β is retained. All other terms
not depending on β are constant factors with respect to β and can therefore be dropped. Thus f(β|y) can be
written as

f(β|y) ∝ exp
{
−1

2
(β − β̂)T (XTX)(β − β̂)

σ2

}
which is recognized as proportional to a two dimensional normal density with mean β̂ and variance (XTX)−1σ2.
Thus in the simple setting the mean of the posterior mean can already be seen from the above formula. But
in a more complex setting, the posterior distribution does not have a standard form and we need to setup a
sampling scheme which allows us to draw random numbers from the posterior distribution. The sampling
scheme that we are introducing here is called the Gibbs Sampler.

Gibbs Sampler for β

The simple regression model that we are using for the breast circumference and the body weight data can be
written in matrix-vector notation as

6

y = 1β0 + xβ1 + ε

In the Gibbs sampling scheme both unknowns β0 and β1 are sampled from their full conditional distributions.
For β0 the full conditional posterior distribution is f(β0|β1, y) which is computed for the current value of β1.
Separating β0 from the other unknowns yields the linear model

w0 = 1β0 + ε

where w0 = y − xβ1. The least squares estimator of β0 is

β̂0 = (1T 1)−11Tw0

with variance

var(β̂0) = (1T 1)−1σ2

Applying the same strategy as for f(β|y), it can be shown that f(β0|β1, y) is a normal distribution with mean
β̂0 as mean and (1T 1)−1σ2 as variance. The full-conditional posterior of β1 can be derived the same way,
leading to

β̂1 = (xTx)−1xTw1

with variance var(β̂1) = (xTx)−1σ2 where w1 = y − 1β0.

Your Task

• Create a Gibbs Sampling scheme for the dataset shown in Table 1.
• Use the mean of the generated samples as an estimate for the unknowns β0 and β1.

Solution

We have mentioned earlier that we are using the residual variance that is obtained from the least squares
analysis which is shown just below.
lm_reg_bwbc <- lm(`Body Weight` ~ `Breast Circumference`, data = tbl_reg)
n_res_var <- sum(lm_reg_bwbc$residuals^2)/lm_reg_bwbc$df.residual
n_res_var_rounded <- round(n_res_var, digits = 1)

We start by setting up the matrix X with two columns. The first column contains only ones and the second
column contains the measured breast circumference data.
n_nr_obs <- nrow(tbl_reg)
X <- matrix(c(rep(1, n_nr_obs), tbl_reg$`Breast Circumference`), ncol = 2)

In the next step, we assign the observed body weights to the vector y.
y <- tbl_reg$`Body Weight`

Before, the sampling iterations are started, the vector used for the sampled values is initialised.
beta <- c(0,0)
meanBeta <- c(0,0)

7

The random samples are drawn in a loop where in turn the unknowns are updated. Before starting the loop,
we have to fix the random number generator seed, such that we get reproducible results.
#' fix the seed
set.seed(123942)
#' fix the number of samples
niter <- 100000
#' loop over the iterations
for (iter in 1:niter){

sampling the intercept beta_0
w <- y - X[,2] * beta[2]
x <- X[,1]
xtxi <- 1/crossprod(x)
betaHat <- crossprod(x, w) * xtxi
beta[1] <- rnorm(1, betaHat, sqrt(xtxi * n_res_var))
sample the slope beta_1
w <- y - X[,1] * beta[1]
x <- X[,2]
xtxi <- 1/crossprod(x)
betaHat <- crossprod(x, w) * xtxi
beta[2] <- rnorm(1, betaHat, sqrt(xtxi * n_res_var))
sum up the estimate
meanBeta <- meanBeta + beta
output every 10000 rounds
if ((iter%%10000) == 0){

cat(sprintf("Iteration: %d \n", iter))
cat(sprintf("Intercept: %6.3f \n", meanBeta[1]/iter))
cat(sprintf("Slope: %6.3f \n", meanBeta[2]/iter))

}
}

Iteration: 10000
Intercept: -294.094
Slope: 4.388
Iteration: 20000
Intercept: -550.415
Slope: 5.813
Iteration: 30000
Intercept: -719.016
Slope: 6.750
Iteration: 40000
Intercept: -804.818
Slope: 7.227
Iteration: 50000
Intercept: -887.182
Slope: 7.684
Iteration: 60000
Intercept: -945.612
Slope: 8.009
Iteration: 70000
Intercept: -945.389
Slope: 8.008
Iteration: 80000
Intercept: -934.225
Slope: 7.946

8

Iteration: 90000
Intercept: -932.951
Slope: 7.939
Iteration: 100000
Intercept: -953.116
Slope: 8.051

The last line of the above output corresponds to the Bayesian estimate of the intercept and the slope. That
would need to be compared to the least squares estimate which is obtained from
summary(lm_reg_bwbc)

##
Call:
lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg)
##
Residuals:
Min 1Q Median 3Q Max
-17.3941 -6.5525 -0.0673 9.3707 13.2594
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1065.115 255.483 -4.169 0.003126 **
`Breast Circumference` 8.673 1.420 6.108 0.000287 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 11.08 on 8 degrees of freedom
Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287

9

	Problem 1: Example with LASSO
	Your Tasks
	Solution

	Problem 2: Bayesian Regression Analysis
	Bayesian Estimation Of Unknowns
	Gibbs Sampler for \beta
	Your Task
	Solution

