Chapter 8

Multiple Traits

So far we have seen how to predict breeding values using the BLUP animal
model. These breeding values were always only for one trait. From a statisti-
cal point of view, experts are calling such analyses univariate evaluations. In
reality, livestock breeders want to improve their animals in a population with
respect to several traits simultaneously. If there are genetic relationships (mea-
sured by genetic correlations) between traits, univariate predictions of breeding
values do not make optimal use of the available information. This effect is
stronger, if certain traits can only be observed in animals of one sex. Accord-
ing to (Mrode, 2005) who cites (Schaeffer, 1984) and (Thompson and Meyer,
1986), the increased accuracy of the evaluations is one of the main advantage of
multivariate BLUP analyses. Predictions of breeding values for several traits in
a single evaluation is called multivariate prediction of breeding values. Such
multivariate analyses can be implemented in different ways such as

e combining different corrected information sources in a multivariate selec-
tion index (no longer used).

o multivariate prediction of breeding values using BLUP animal model
(method of choice).

e combining predicted breeding values from univariate analyses.

Before the introduction of the BLUP animal model, breeding values were esti-
mated using a method that is called selection index method. A brief review
about selection index theory is given in section 8.3. While selection indices are
no longer used to estimate breeding values, selection index theory is still used
to predict the aggregate genotype, as will be shown later in this chapter. Before
that, we start with an introduction to multivariate BLUP methods.
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88 CHAPTER 8. MULTIPLE TRAITS

8.1 Multivariate Predictions Of Breeding Values
Using BLUP

The prediction of breeding values using a multivariate BLUP model is the op-
timal prediction procedure. It has advantages, if

e some traits have lower heritability than others

e environmental correlations exist between traits measured on the same an-
imal

e some traits are available only a subset of all animals

e some traits were used for a first round of selection

In principle, a multivariate analysis can be thought of as several univariate
analyses which are stacked one on top of the other. Let us assume that we have
two traits. For the first trait, we define the model

1= X161+ Ziug e

Similarly for the second trait, we define the model

Yo = Xofy + Zouy + €4

If we group the data by traits, then we can write the multivariate model as

=l R 2l ]2

Yo 0 X Ba 0 2 U €2

The genetic variance-covariance matrix G, for the two traits has the following
structure.

2
G. = [ %9, Tg1,92 } _ [ 911 12 }
0= 2 | =
Og1,92 Oy, 921 Y22
The inverse G! of G, can be formulated as
11 12
G—l — g g :|
0 [ 2l g2

For the random residual effects, the variance-covariance matrix R, for the two
traits can be written as
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Also the inverse Ry' can be written as
Bl AL 12
0 P2l 22

The variance-covariance matrix for the complete set of true breeding values and
for all random residuals can be written as

— up | _ | gnd gA | _ —
var(u)—var{%}—{gmfl 922A]—G0®A—G

where A is the numerator relationship matrix and ® denotes the so-called Kro-
neckerproduct of two matrices. The variance-covariance matrix R for the
random residuals is given by

R =wvar(e) = var{ “ ] = [ ruln T2l } =Ry®1I,

€2 Torly, 1oy,

where n corresponds to the number of animals in the pedigree. The covariances
between all elements of a and e are 0. This is denoted by combining both
random vectors into a single vector and writing down the variance-covariance
matrix of the combined vector as

Uy gnA 9124 0 0

ul| |G 0] Uy | | 9214 9204 0 0
var[ e } - { 0 R } - e; | | O 0 rl, rol,
€2 0 0 1ol 7ol

The solutions to get estimates of fixed effects and to get predictions for breeding
values are obtained from the solutions of mixed model equations. These have
exactly the same structure as in the univariate case.

_ XTRfly
- ZTRfly

u

XTR'X X"R'Z [ B
ZTR'X ZTR1'Z+G!

where

Ty [x, 0] 5 |8 [z 0] . Ja
o[- a2 e [0 2] -]

Based on the specification of the variance-covariance matrices described earlier,
weget R'=Ry'®1I,and G ' =Gyl AL
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8.2 Multitrait Selection

Now that we have predicted breeding values for a collection of traits available,
the question is how to integrate these predicted breeding values into a consistent
selection criterion. Selection index theory provides a tool to optimally combine
different sources of information in order to approximate the aggregate genotype
H. In section 8.2.3, we will return to this topic once again. Although the selec-
tion index provides an ideal framework to combine estimated breeding values
into an optimal selection criterion, we are going to describe to other selection
procedures that are commonly used in practical livestock breeding. The two
procedures are

1. Tandem-Selection and
2. Selection based on independent selection thresholds.

The description of these procedures aims at showing the negative consequences
that results from the use of these sub-optimal selection strategies.

8.2.1 Tandem-Selection

The term Tandem-Selection stands for the strategy of always improving the
population with respect to just one trait. Once the breeding goal for this trait
is reached the population is improved with respect to a different trait. This
sequence of single-trait improvements is continued until the breeding goal for
all traits is reached.

The problem with Tandem-Selection is that while improving the population for
a given trait, the population can only realize correlated selection responses for
all other traits. These correlated selection responses might be very small or can
even be negative which causes the time that it takes to reach the breeding goal
for all relevant traits to be very long.

8.2.2 Selection Based On Independent Selection Thresh-
olds

This method was used before the selection index was discovered. This selection
procedure is very easy to apply. First selection thresholds are defined for all
traits. In the next steps, all animals which are above the thresholds for all
traits are selected as parents of the next generation. With this method, selec-
tion responses for all traits can be obtained in the early generations after the
implementation of this selection strategy.

We are using the following example to show how selection based on independent
selection thresholds is used. For reasons of simplicity, we restrict ourselves on
two traits. But the results can be generalized without any problems.
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8.2.2.1 Example: Selection On Independent Thresholds

In a dairy cattle population, breeders want to improve milk yield and protein
content. We assume the following selection thresholds for the two traits of
interest during first lactation

o milk yield: 6900 kg
o protein content: 3.5 %
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Figure 8.1: Milk Yield and Protein Content For Dairy Cows

Figure 8.1 shows the performance data for a herd of dairy cows. The selection
thresholds (red line for milk yield and blue line for protein content) divide the
diagram into four quadrants. None of the cows in the lower right quadrant does
meet any of the selection criterion imposed by the thresholds. The cows in the
upper left quadrant fulfill the requirements for protein content and the cows in
the lower right quadrant fulfill the requirements for milk yield. Only the cows
in the upper right quadrant fulfill the requirements for both traits.

The disadvantage of this selection strategy becomes apparent with the cows in
the upper left and in the lower right quadrant. They are culled and thereby
not considered as parents of the next generation even though, they have good
performances in one of the traits. From a statistical genetics point of view
there are three problems associated with a selection strategy that is based on
independent selection thresholds
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1. livestock breeders tend to put the thresholds for all traits in the range
of positive predicted breeding values. This leads to an exclusion of very
many animals and a dramatic reduction in genetic variability

2. genetic relationships between traits are completely ignored. These rela-
tionships must be considered when defining selection thresholds. Other-
wise the expected genetic gain will not be as expected.

3. differences in the economic relevance of the different traits are completely
ignored. Putting the threshold in all traits into the range of positive pre-
dicted breeding values leads to a high emphasis on traits with a high her-
itability. Traits with lower heritability will have only very small selection
responses.

8.2.3 Selection Index

In section 8.2, we have already briefly described how we can use selection index
theory to approximate the aggregate genotype H in an optimal way. Just as a
reminder, the aggregate genotype H combines all economically relevant traits
into a single value using a linear function of the true breeding values uw and
taking the economic values w as weighting factors. Given that H corresponds
to the linear function

H=wTu

and we want to approximate H by an Index I which is a linear function of all
predicted breeding values 4, we can write

I=bv"4a

where b is a vector of unknown index weights. The vector b is determined using
the optimality condition of minimum prediction error variance which results in

b= P 1Gw (8.1)

where P is the variance-covariance matrix between all information sources and
G is the covariance matrix between the information sources and the traits in
the aggregate genotype. In case where the traits in the aggregate genotype H
and in the index I are the same, the matrices P and G are defined as

P = var(a)

and

G = cov(u, )
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For predicted breeding values using BLUP, it can be shown that cov(u,u) =
var(a) and therefore P = G. Using that equality in equation (8.1), we get

which means that the vector b of index weights corresponds to the vector of
economic values w.

The use of the selection index theory to combine predicted breeding values as
information sources to approximate the aggregate genotype has the following
advantages

« genetic relationships (correlations) between traits in the aggregate geno-
type are considered correctly

o relationships between information sources in the index are considered cor-
rectly

¢ information from auxiliary traits can be used

o differences in economic relevance of different traits are considered correctly

o expected selection responses can be estimated and thereby quantified

Despite all these advantages, index selection alone is very rarely used in practical
livestock breeding. The reason for this is that every population has a few traits
that are difficult to associate with an economic value or for some traits it is
difficult to come up with genetic parameters. As a consequence of that, in
practical livestock breeding we will always find a mix of index selection and a
variety of independent selection thresholds.



94 CHAPTER 8. MULTIPLE TRAITS

8.3 Review On Selection Index Theory

Before the introduction of the BLUP animal model ((Henderson, 1973b) and
(Henderson, 1975)), breeding values were estimated using Selection Index
Theory ((Hazel, 1943) and (Hazel and Lush, 1942)). Both methods - selection
index and BLUP - are based on the same genetic model. The main difference
between the two methods consists in the way how they correct for identifiable
systematic environmental effects. We start with a treatment of selection index
theory.

8.3.1 Introduction

In principle, prediction of breeding values aims at assessing the genetic potential
of a selection candidate that is due to additive gene effects based on all avail-
able information, such that the correlation between true and predicted breeding
value is maximal. Because, we want to do this for a large number of selection
candidates, we can formulate our aim in a more general way. For a given popu-
lation, we want to predict breeding values for all animals in the population using
all available information, such that the correlation between true and predicted
breeding values are maximized. An alternative objective for the prediction to
the maximization of the correlation between true and predicted breeding values
is the minimization of the mean squared error of the prediction. The descrip-
tion of the aims of our procedure to predict breeding values shows that we are
dealing with two different concepts of breeding value.

1. True breeding value which corresponds to the sum of all additive gene-
effects

2. Predicted breeding value which is a function of the phenotypic obser-
vations (y) that is determined by statistical methods. As a prediction it
is always associated with a certain error which we want to be minimal.

The prediction of breeding values has three different objectives.

1. Selection candidates are ranked according to the predicted breeding values.
Hence, it provides a criterion for selecting parents out of a pool of selection
candidates

2. Predicted breeding values are used to assess the response to selection and
is important for planning a breeding program

3. Predicted breeding values are one criterion that affect the price of breeding
animals and the price of seamen.

The definition 2.1 of the term breeding value has several problems when it
comes to its potential usefulness for prediction.

o It is impossible to generate an infinite number of progeny before having a
reliable prediction of the breeding value

¢ Due to the above mentioned objectives, we want to have a prediction of
the breeding value available as early as possible.
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e The predicted breeding value should be as accurate as possible

To address these issues, the above mentioned methods were developed. We start
with the method of the selection index.

8.3.2 Selection Index Method

The selection index is a method to predict the breeding value of an animal (7)
by using all available information on the animal and on its relatives. The result
of the selection index method is an assignment of a numerical value (I) to each
animal. All animals in the population can then be ranked according to their
index value. The ranking according to the index value can be used as selection
criterion. In principle the index I is defined as linear combination of all available
information. This can be written as

I =1; =byy, +byys + -+ by, =b"y (8.2)

where b is a vector of index weights and y is a vector of information sources.
Here we assume that all values in y are corrected for appropriate mean levels.
The resulting index value I in (8.2) is used as the predicted breeding value .
From a statistical point of view equation (8.2) corresponds to a multiple linear
regression. The vector of index weights b are understood as partial regression
coefficients.

8.3.3 Aggregate Genotype

In most practical livestock breeding scenarios, we want to improve a population
at the genetic level with respect to more than one trait or characteristic, simul-
taneously. This requires a procedure that enables us to combine the breeding
values of several trait into one selection criterion. This criterion is called the
aggregate genotype H. It is defined as

H = wyuy + wytiy + - + w,,u,, = wlu (8.3)

where u corresponds to the vector of true breeding values and w is a vector of
economic values. The economic value w,, for a given trait k is defined as the
marginal change in profit caused by a small change in the population mean (uy,)
of the trait k. At this point, we are not describing how the economic values
wy, are derived, but we consider them to be known. For the construction of
the selection index, we are using the general form of the aggregate genotype H.
Once the selection index is constructed, we can go back to the simple scenario
of considering just one trait which reduces the aggregate genotype H to the true
breeding value u of the single trait.
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8.3.4 Theory of Index Construction

The term index construction stands for the computation of the vector of index
weights b for a given set of information sources and a given aggregate genotype.
Independently from the available information sources, the following parameters
must be known

e heritabilities and phenotypic standard deviations for the traits in the ag-
gregate genotype and for the traits in the index.

¢ phenotypic correlations between the traits in the index

e genetic correlations between the traits in the index and the traits in the
aggregate genotype

o genetic correlations between the traits in the aggregate genotype

e economic values for the traits in the aggregate genotype

The objective of the index construction is to maximize the correlation rg; be-
tween the index I and the aggregate genotype H. Because the index I corre-
sponds to a multiple linear regression, the mean squared error between aggregate
genotype and index is to be minimized. From this it follows that

E(H —1)> - min (8.4)

The solution to the index construction objective in equation (8.4) leads to the
so-called index normal equations which have the following form.

Pb=Guw (8.5)

where P is the variance-covariance matrix between all information sources in
the index, G is the genetic variance-covariance matrix between the traits in the
aggregate genotype and in the index and w is a vector of known economic values.
Solving for the vector of unknown index weights b leads to

b= P lGuw (8.6)

The accuracy of the index is assessed by the correlation r;; between the index
I and the aggregate genotype H. The higher this correlation, the better the
approximation of H by I. The correlation ry; can be computed as shown in
(8.7). The terms for cov(H,I), oy and o; are taken from (8.24) and for b we
insert the solution taken from (8.6).
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cov(H,I)
ooy
wl« GT xb
V(WT + C % w) * (bT x P x b)
wl «GT « P 1xGxw
VT« Cxw)x (P LxGxw)T+ Px P 1xGxuw)
wl«GT« P 1+« Gxw
V@WT % Cxw)x (wl «GT x P« Px P~ 1% G *w)
_ wl«GT« P 1+« Gxw
B VW + Cxw) x (wT « GT x P~1x G+ w)
wl «GT « P~1xGxw
:\/ wT * C *w

THr =

91
7
(8.7)

The response to selection R which results from applying a selection scheme
according to the index I per generation is computed as

R=i*xry*xoy
.o

=ix L xoy
OH

where ¢ is the selection intensity.

8.3.5 Example of Index with Own Performance

The simplest case of an index I is the one where the aggregate genotype H
consists of one trait and the index I contains a single own performance record
of the same trait. This is equivalent to using the index I to predicting the
breeding value u of an animal based on own phenotypic own performance record
y. Hence we can set

H=u and I ="by*

During the index construction, we have assumed the information in the index
to be corrected for the appropriate population mean p. For our example here,
we can set y* = y — u. To determine the unknown index weight b which is on
our example just a single number, we have to specify P, G and w. Because,
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we are looking at just one trait, the vector of economic values w is set to one.
The matrix P was defined to be the variance-covariance matrix between the
traits in the index. As the index I contains just one phenotypic record, then P
corresponds to the phenotypic variance Uf/ of our trait of interest. The matrix G
was defined to be the genetic variance-covariance matrix between the traits in
the aggregate genotype and the traits in the index. In our example we have just
one trait which is the same in H and in I, hence G corresponds to the additive
genetic variance o2. In summary, we have found that

g Qv
(I
= Q 9
SN €N

(8.9)

Inserting the terms of (8.9) into equation (8.6) to compute the index weight b
results in

=2 =h (8.10)

Using the index weight b found in (8.10) to compute the index I, we get

I=1by
=h(y —p)
— g, (8.11)

7

The index value I that we obtained in (8.11) corresponds to the predicted breed-
ing value for a given trait of an animal ¢ based on an own performance phenotypic
record of animal ¢ in the respective trait. Comparing the predicted breeding
value obtained in (8.11) using selection index theory to the result obtained from
the regression approach in (3.5) shows that they are identical.

The accuracy rp; of the predicted breeding value (4;) using selection index
theory is computed as shown in (8.7)
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T =

=h (8.12)

Similarly to the predicted breeding value, the accuracy rg; that results from
selection index theory is identical to what was found using the regression ap-
proach.

8.3.6 Example with Progeny Records

The prediction of breeding values for a given animal ¢ based on progeny records
is very common in livestock breeding. Examples are dairy cattle where bulls are
evaluated based on lactation records of daughters. Similarly for beef cattle or
pigs where sires are evaluated based on carcass performance of their progeny. For
a very long time this has been the standard method to predict breeding values to
select parents in a breeding program. First we assume that the progeny of animal
i are all half-sibs. Before, we can use the performance records of the progeny
to predict breeding values for the parents, we have to correct them with the
appropriate mean performance. After the correction the progeny performance
values are averaged for a given parent. These mean performance values for a
given parent ¢ are called y; and are used to predict the breeding values. Hence
our index I for a given animal ¢ is defined as

Because, we are only looking at a single trait, the aggregate genotype H corre-
sponds to the single true breeding value u of this trait and the economic weight
w is 1. Now we are ready to set up the index normal equations. In general these
equations have the form

Pb=Guw (8.14)

where P corresponds to the variance-covariance matrix of the information
sources in the index. Our index I as defined in (8.13) contains just one source
of information, namely the average y; of the progeny performance values of
animal 7. In general the phenotypic variance of the mean y of n progeny
performance values corresponds to
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2= T, (8.15)

For our case with the progeny records, t takes the value of ihz. For more details
on how to compute 0%, see section 8.3.8. Hence the matrix P reduces to a single
number

1 —1)h?/4
(DR

P=02= 2 (8.16)

n

The matrix G in (8.14) is the genetic covariance matrix between the traits in H
and the information sources in I. In our current example G = cov(u;, ;) = 302.
For more details on how to compute G, see section 8.3.8.2. Now that we have

all the components of (8.14), we can insert them and solve for b.

_ 2
1+ (n—1)h /405*17: 103
n 2
- 2nh?
4+ (n—1)h?
2n
= s (8.17)
4—h?
where k = 7

With this the predicted breeding value ; for animal i based on the average
progeny performance values using the index approach corresponds to

Uy =1I="bx(y; —p)= * (Y; — 1) (8.18)
The accuracy for the predicted breeding value in (8.18) is

n
'r prg
HI n+k

(8.19)

8.3.7 Appendix: Derivation of Index Normal Equations

In this section we want to show how to derive the index normal equations
from the objective criterion in the index construction procedure. The objective
criterion was formulated in equation (8.4) as

U =FE(H—1I)?>— min (8.20)
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The derivation starts by inserting the definitions of H and I into (8.20).

U=EH-I1?=EH?—2«Hx+I+1?
= BE(H?) — 2% E(H = I) + E(I?) (8.21)

Both the expected value E(H) of the aggregate genotype H and the expected
value E(I) of the index are both 0. This can be seen by the following expansion

E(H)=EwTa) =wl* E(u) =wl x0=0 (8.22)

because the breeding values u are defined as deviations, there expected value
E(u) is always 0. Similarly for the index I, we mentioned that the components
in the vector y denoting the information sources that enter the index I are
corrected by suitable population means. Due to this correction, we can state
that F(y) = 0 and thereby F(I) = 0. Using these results on the expected values
of H and I, we can further develop (8.21)

U = var(H) —2xcov(H,I)+ var(I)
= var(wlu) — 2 * cov(w?u, bTy) + var(bTy)
= wlvar(u)w — 2 x wT cov(u, y* )b + bTvar(y)b

=w'Cw—2xwTG"b+ bT Pb (8.23)

where C is the variance-covariance matrix of the true breeding values of the
traits in the aggregated genotype, GT is the genetic variance-covariance matrix
between the traits in the aggregate genotype and the traits in the index and
P is the phenotypic variance-covariance matrix between the traits in the index.
Hence we can state

var(H) = w? « C xw
cov(H,I) =wl *GT b
var(I) = b1 x Pxb (8.24)

In the objective criterion in (8.20), we stated that ¥ should be minimized. This
is done by computing the derivative of ¥ with respect to the vector b. The
solution vector b that sets that derivative to 0 corresponds to the solution that
we are looking for. The derivative of ¥ with respect to the vector b is also called
the gradient and can be computed as

%—}I}I:O—Q*wT*GTJrQbTP (8.25)
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Setting (8.25) to 0 leads to

0=—2xw *xGT +207P
wl'GT =pTP
Pb = Guw (8.26)

The last line in (8.26) follows by transposing both sides of the second last line
and because P is symmetric, PT = P. As a result we obtain the index normal
equations which can be solved for the unknown vector b by pre-multiplying both
sides with the inversion matrix P~! of P.

b= P 'Gw (8.27)

Because P is a variance-covariance matrix, it is guaranteed to be positive definite
and its inverse P! does exist.

8.3.8 Appendix: Derivation of the Index Components for
the Example of the Mean Progeny Performance

8.3.8.1 Variance of Mean Progeny Performance

The mean performance values of a group of progeny for a given parent has the
following structure

_ 1 &
U= Uik (8.28)
na

where y,, is the corrected performance value of progeny k of animal ¢. Each y,
can be decomposed into

Yio = Up €
1

1
= §ul —+ §ud,k: + mk + ek (829)

The variance (05) of a single phenotypic observation (y, ;) of progeny k of parent
1 can be computed as
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1 1
oy, =var(y; ) = 'Ua’r(iui + 5 Uk +my, + ey)

1 1
var(§ui) + var(gud’k) + var(my) + var(ey,)

1 1
= —var(u) + Zvar(ud,k) + var(my,) + var(e,)

4
1 1
= 103 + Zvar(ud7k) + var(my,) + var(ey,) (8.30)

In (8.30) we have assumed that all the pairwise covariances between the terms
are 0. We define the intra-class correlation ¢ which is the part of the total
variance which is attributed to the permanent effect in the single performance
records.

1/402 1
t= U= Zp? 8.31
05 4 ( )

Inserting the decomposition of (8.29) into (8.28) leads to

B R
yi:*Zyi,k
"=
11 1
= ;(Eui T Ua kT T €x)
1 1&1 1< 1&
- .+ = Z - - 8.32
2%‘*‘”;2%,1@4‘”;7’%"'”;% (8.32)

Taking the variance on both sides of (8.32) leads to our final result the variance
(07) of the mean progeny performance.
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_ 1 1< 1 1 1<&
o2 =wvar(y;) = var(2uZ + E;iud’k + Eka + ﬁZek)

1 1.1 1 & 1&
= var(iui) + var(— Z §ud_’k) + var(— Z my,) + var(— Z ey)

gy gy gy
1 1 1 1
103 + 4 —wvar(ug ) + Evar(mk) + Evar(ek)
1

1
10“ + = (Zvar(ud7k) + var(my) + var(ek)>

1
:t*oz—i—g(l—t)*az
nxt+1—t

= f *O’,y
I+ (n—-10t
= 0 (8.33)

Because, we saw earlier that t = h?/4, we can insert that into (8.33) which
brings us to the final result

12
= 1+(n—1Dh*/4 * 03 (8.34)
n

ag

<IN

8.3.8.2 Covariance between True Breeding Value and Mean Progeny
Performance

The set-up of the index normal equations requires the matrix G which corre-
sponds to the genetic covariance between the trait in the aggregate genotype and
the information sources in the index. For the example with the mean progeny
performance values, the matrix G is defined as

G = ot ) = conli 1 3

1 n
= cov (u 7u1+n2{ udk+mk+ek})

k=1

1
= cov(u, 5“1)
L,
= 5% (8.35)

In (8.35), we have used that the covariance between u; and all other components
of y, 1, except u; is 0.
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