Chapter 11

Genome-Wide Association

Studies (GWAS)

This chapter is based on chapter 6 of (Gondro et al., 2013). As such it provides
a summary of some of the statistical methods used for genome-wide association
studies (GWAS).

11.1 Single Marker Regression Tests

GWAS use linkage disequilibrium which correspond to associations of markers
to causative mutations of quantiative trait loci. These associations are only
expected to hold at the population level. They arise from small chromoso-
mal segments that are inherited from a common ancestor. These chromosome
segments which trace back to a common ancestor without any intervening re-
combination will carry identical marker alleles or marker haplotypes. If there
is a QTL somewhere inside of such marker segments, they will also carry the
same QTL allele. There are a number of statistical methods that use these
associations to find locations of interesting QTL. A simple method is the single
marker regression test.
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In a random mating population without population substructures, the asso-
ciation between a marker and a QTL that is relevant for the expression of a
phenotypic value of an economically important trait can be tested with a single
marker regression as

y=Wb+Xg+e (11.1)

where y is a vector of phenotypes, b is a vector of fixed effects, g is the marker
effect and e is a vector of random error terms. These error terms are all identi-
cally and independently distributed with e;; ~ N (0,02) where o corresponds
to the error variance. The design matrix W links observations to fixed effects

and the matrix X allocates records to the marker effect.

In this model the marker effect is treated as fixed and the model is additive
which means that two copies of the same allele have twice the effect of a single
marker allele and zero alleles have no effect at all. The underlying assumption
is that a given marker will only affect the phenotypic observation of a trait if it
is linked to an unobservable QTL.

The null hypothesis (H,) is that the marker does not have an effect on the
trait while the alternative hypothesis (H,) is that the marker does have an
effect on the trait. The null hypothesis is rejected if the test statistic F' satisfies
the condition F' > F, ,; ,, where F, ; 5 is the value of the F-distribution at
significance level o and v1 and v2 degrees of freedom.
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11.1.1 Example

Consider the following example dataset.

Table 11.1: Phenotypic and genotypic data for ten animals and one
marker locus

Animal Phenotype SNP Allele 1 SNP Allele 2

1 2.03 1 1
2 3.54 1 2
3 3.83 1 2
4 4.87 2 2
5 3.41 1 2
6 2.34 1 1
7 2.65 1 1
8 3.76 1 2
9 3.69 1 2
10 3.69 1 2

We need a design matrix X to allocate both the mean and SNP alleles to
phenotypes. In this case we will use an X matrix with number of rows equal
to the number of observations and one column for the SNP effect. We will set
the effect of the “1” allele to 0 which means that allele “2” is the allele with the
positive effect on the phenotype. So the SNP effect column is the number of
copies of the “2”7 allele. We assume a common mean g as the only fixed effect.
Hence the matrices X and W have the following structure.
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The general mean and the SNP effect can be estimated as

Al wTw wrx] [wTy]  [2.35
gl | X™TW XTX XTy| ™ [1.28
The F-value can be computed as

(n—1)(gX"y —1/ny"y)

F= ‘ 4
yTy — gXTy —ully

= 4.56

The tabulated value for Fj o5, 9 = 5.12 for a significance level a = 0.05 and
vl =1 and v2 = 9 degrees of freedom. Hence for this small dataset the null
hypothesis of the SNP having no effect on the trait cannot be rejected.

11.2 Genome-Wide Association Experiments
Using Haplotypes

Instead of using single markers, haplotypes of markers could be used in genome-
wide associations. In this context, the term “haplotype” stands for a group
of consecutive markers on the same chromosome. The effect of haplotypes in
windows across the genome would be tested for their association with phenotype.
The justification for using haplotypes is that marker haplotypes may be in
greater linkage disequilibrium with the QTL alleles than single markers. If this
is true, then the r?! between the QTL and the haplotypes is increased, thereby
increas- ing the power of the experiment.

INote r2 is defined as r? = (f(A1B1)f(A2B2) —
f(A1B2)f(A2B1)2/(f(A1)f(A2)f(B1)f(B2)) and measures how closely the two loci
A and B are linked.
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11.3 Fitting All Markers Simultaneously

There are two disadvantages of the approaches described above that fit single
SNPs, haplotypes, or single genome regions in the analysis. One of these is
the multiple testing problem, that is many thousands of tests are run, so the
significance level must be very stringent to take this into account. Further, the
setting of a significance threshold combined with the testing of so many marker
effects means that the markers most likely to exceed the threshold are those
with favorable error terms, so that the significant markers have overestimated
effects. The second disadvantage, particularly of the single SNP approach, is
that a region containing the true mutation can be hard to define, as a large
number of SNP can be in LD with the QTL, such that significant SNP span a
wide region. This is particularly problematic in livestock (and likely some plant
species), as low, but non zero, LD extends for Mb. While a partial solution to
this second problem is to jointly fit SNP in multiple or conditional regression, an
even better solution to both these issues is to fit all SNP simultaneously. This
involves fitting the same models that have been proposed for genomic prediction.

This can be achieved by fitting the SNPs as random effects (e.g., derived from
a distribution), with different prior assumptions on the distribution of possible
SNP effects (e.g., a Bayesian approach). The model is:

y=1Tp+ Xg+e

where g is now a vector of random SNP-effects. Because the above equation
consists of a linear mixed-effect model, the solutions can be obtained by the
well-known mixed-model equations.
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