Additional Aspects of BLUP

Peter von Rohr

2020-11-13

Aspects

Recap: BLUP Animal Model, means that we use a linear mixed effect model with the breeding values of all animals in the pedigree as additional random effect. Solutions for fixed effects and for predicted breeding values are obtained by Mixed Model Equations (MME)

\blacktriangleright Accurracy

- \triangleright Results from MME are estimates of fixed effects and predictions of breeding values
- \triangleright Need statement about quality of estimates and predictions
- \blacktriangleright Confidence Intervals
- ▶ Decomposition of Predicted Breeding values

Accurracy

- \triangleright One property of BLUP was that variance of prediction error is minimal
- \blacktriangleright How can we measure the variance of the prediction error
- \blacktriangleright Fixed effects

By definition of a fixed effect, the true value of the fixed effect, does not have any variance. This means var(\beta) = 0

$$
\mathsf{var}(\beta - \hat{\beta}) = \mathsf{var}(\hat{\beta})
$$

The true value of a random effects
The true value of a random effect (e.g. the breeding value u) is expected to show **a certain variation (for u, var(u) = A** * \sigma_u^2). This means, the predicted breeding **values, they are expected to have a variation that should as close as possible to the variance of the true breeding values.**

$$
var(u-\hat{u}) = var(u)-2 * cov(u, \hat{u}) + var(\hat{u}) = var(u)-var(\hat{u}) = PEV(\hat{u})
$$

because with BLUP: $cov(u, \hat{u}) = var(\hat{u})$

PEV: Prediction error variance

PFV

For real-world datasets, PEV can not be computed exactly, but it has to be approximated.

Single Animal i

$$
PEV(\hat{u}_i) = (C)_{ii}^{22}
$$

where $(C)^{22}_{ii}$ is the *i*-th diagonal of C^{22}

In Accuracy measured by correlation

Reliability (Bestimmtheitsmass) is the square of the accuracy

$$
r_{u_i,\hat{u}_i} = \frac{cov(u_i, \hat{u}_i)}{\sqrt{var(u_i) * var(\hat{u}_i)}} = \sqrt{\frac{var(\hat{u}_i)}{var(u_i)}}
$$

 $PEV(\hat{u}_i) = (C)_{ii}^{22} = \text{var}(u_i) - \text{var}(\hat{u}_i) = \text{var}(u_i) - r_{u_i, \hat{u}_i}^2 \text{var}(u_i)$

Accuracy B_i

Reliability

$$
B_i = r_{u_i, \hat{u}_i}^2 = \frac{\text{var}(u_i) - (C)_{ii}^{22}}{\text{var}(u_i)} = 1 - \frac{\text{PEV}(\hat{u}_i)}{\text{var}(u_i)} = 1 - \frac{(C)_{ii}^{22}}{\text{var}(u_i)}
$$

- \blacktriangleright B_i is large for small $PEV(\hat{u}_i)$
- In the limit $B_i \to 1$ for $PEV(\hat{u}_i) \to 0$
- ▶ For $PEV(\hat{u}_i) \rightarrow 0$ we must have $var(\hat{u}_i) \rightarrow var(u_i)$
- **If** Therefore, the closer var(\hat{u}_i) is to var(u_i), the more accurate the predicted breeding value

Confidence Intervals of \hat{u}_i

▶ Predicted breeding value (\hat{u}_i) is a function of the data (y) Hence \hat{u}_i is a random variable with a distribution

Distribution

Widths Of Confidence Intervals

Breeding values are predicted on different sources of information: Calf first has a parental average: B is around 0.2 - 0.3

Table 1: Widths of Confidence Intervals for Given Accuracies

with $\hat{u}_i = 100$, $var(u_i) = 144$ and $\alpha = 0.05$

Decomposition of Predicted Breeding Value

Simplified Model

$$
y_i = \mu + u_i + e_i
$$

- where y_i Observation for animal i
	- u_i breeding value of animal i with a variance of $(1 + F_i)\sigma_u^2$
	- e_i random residual effect with variance σ_e^2
	- *µ* single fixed effect

Data

 \blacktriangleright all animals have an observation \blacktriangleright animal *i* has \blacktriangleright parents s and d **I** n progeny k_i (with $j = 1, \ldots, n$) If n mates l_j (with $j = 1, \ldots, n$). progeny k_j has parents i and l_j .

Example

Variance components $\sigma_e^2 = 40$ and $\sigma_u^2 = 20$.

Model Components

$$
X = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
X^{T}X = \begin{bmatrix} 5 \end{bmatrix}, X^{T}Z = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

Right-hand Side

$$
X^T y = \begin{bmatrix} \frac{n}{2} \\ \frac{n}{2} \end{bmatrix} = 19.8
$$

$$
Z^T y = \begin{bmatrix} y1 \\ y2 \\ y3 \\ y4 \\ y5 \end{bmatrix} = \begin{bmatrix} 4.5 \\ 2.9 \\ 3.9 \\ 3.5 \\ 5 \end{bmatrix}
$$

 A^{-1}

$$
A^{-1} = \begin{bmatrix} 1.5 & 0.5 & 0 & -1 & 0 \\ 0.5 & 1.5 & 0 & -1 & 0 \\ 0 & 0 & 1.5 & 0.5 & -1 \\ -1 & -1 & 0.5 & 2.5 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}
$$

MME

Insert Data

Animal 4

 \triangleright parents 1 and 2 \blacktriangleright progeny $5 \cdot$ **from the pedigree**

- \blacktriangleright mate 3
- inspection of second but last equation in MME where y_4 and \hat{u}_4 occur
- Remember from construction of A^{-1} , the variable d^{ii} can assume the following values

$$
d^{ii} = \begin{cases} 2 & \text{both parents known} \\ \frac{4}{3} & \text{one parent known} \\ 1 & \text{both parents unknown} \end{cases}
$$

Extract Equation

General Equation

$$
\hat{u}_i = \frac{1}{1 + \alpha \delta^{(i)} + \frac{\alpha}{4} \sum_{j=1}^n \delta^{(k_j)}} [y_i - \hat{\mu}
$$

$$
+ \frac{\alpha}{2} \left\{ \delta^{(i)}(\hat{u}_s + \hat{u}_d) + \sum_{j=1}^n \delta^{(k_j)}(\hat{u}_{k_j} - \frac{1}{2} \hat{u}_{l_j}) \right\} \right]
$$

where α ration between variance components σ_e^2/σ_u^2 *δ* (j) contribution for animal j to A^{-1}