Genetic Covariances Between Animals

Peter von Rohr

16 Oktober 2020

BLUP Animal Model

- Traditional prediction of breeding values
 - i.e. no genomic information available
 - de-facto standard method
- Model recap

$$y = X\beta + Zu + e$$

where

- y vector of length n of phenotypic information
- β vector of length p of unknown fixed effects
- $X \quad n \times p$ incidence matrix
- u vector of length q of unknown random breeding values
- $Z = n \times q$ incidence matrix
- e vector of length *n* of unknown random residuals

Example

Sire	Dam	Herd	WWG
1	2	1	4.5
1	NA	2	2.9
4	3	2	3.9
5	2	1	3.5
	1 1 4	1 2 1 NA 4 3	1 2 1 1 NA 2 4 3 2

Animal Model Setup

- Convert information from data into model
- Put observations in vector y

$$y = \begin{bmatrix} 4.5 \\ 2.9 \\ 3.9 \\ 3.5 \end{bmatrix}$$

Fixed effects such as herd go in vector β and X links observations to components in β

$$X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

Breeding Values As Random Effects and Residuals

$$Z = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix}, \ e = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix}$$

Putting Everything Together

$$\begin{bmatrix} 4.5 \\ 2.9 \\ 3.9 \\ 3.5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix}$$

Solution with Mixed Model Equations

General form

$$\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix}$$

Assume $R = I * \sigma_e^2$ and we set $G = A * \sigma_u^2$

$$\begin{bmatrix} X^T X & X^T Z \\ Z^T X & Z^T Z + \lambda * A^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T y \\ Z^T y \end{bmatrix}$$

with
$$\lambda = \sigma_e^2/\sigma_u^2$$

Components of Mixed Model Equations

Numerator Relationship Matrix

- ▶ Only component missing in mixed model equations: matrix A
- ► *A* is called the **numerator relationship matrix**
- Properties of A

$$var(u) = G = A * \sigma_u^2$$

Meaning of var() for scalar variable x

- ▶ Depending on type of argument to var(), the result is different
- Scalar argument x, that means x is just a single number

$$var(x) = \sum (x - E[x])^2 f(x)$$

for a discrete random variable x, e.g. genotypic values V in single locus model.

$$var(x) = \int (x - E[x])^2 f(x) dx$$

for a continuous random variable x.

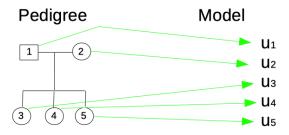
Meaning of var() for a vector u

Assume that u is a vector with q elements

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ u_q \end{bmatrix}$$

Then var(u) is a $q \times q$ variance-covariance matrix with a structure shown on the next slide

Meaning of A



Variance-Covariance

	U ₁	U ₂	U з	U 4	U 5
Uı	var(u1)	cov(u1,u2)	cov(u1,u3)	cov(u1,u4)	cov(u1,u5)
U2		var(u2)	cov(u2,u3)	cov(u2,u4)	cov(u2,u5)
U з			var(u₃)	cov(u3,u4)	cov(u3,u5)
U4				var(u4)	cov(u4,u5)
U 5					var(u5)

Elements of A

- Remember: $var(u) = G = A * \sigma_u^2$
- ▶ Diagonal elements $(A)_{ii} = 1 + F_i$ where F_i : inbreeding coefficient of i
- ▶ Offdiagonal elements $(A)_{ij} = cov(u_i, u_j)/\sigma_u^2$
- Symmetric
- Definition leads to recursive algorithm for computing components of A

Example

Elements of G are computed as

 Animal 1 has unknown parents and is assumed to show no inbreeding (parents are not related)

$$var(u_1) = (1 + F_1) * \sigma_u^2 = \sigma_u^2$$

Animal 2 has unknown parents and is not related to animal 1

$$cov(u_1,u_2)=0$$

Animal 3 has parents 1 and 2

$$cov(u_1, u_3) = cov\left(u_1, \left[\frac{1}{2}(u_1 + u_2) + m_3\right]\right) = \frac{1}{2}\sigma_u^2$$