Inverse Numerator Relationship Matrix with Inbreeding

Peter von Rohr

2020-10-30

Inbreeding coefficient F_i of animal i is half of the genetic relationship of the parents s and d of i; F_i = 1/2 (A)sd First idea is compute F_i based on the matrix A For big datasets this is not possible. ==> need a method to compute inbreeding coefficients (F_i) without setting up the complete matrix A

Inbreeding var(m) = D * \sigma_u^2

- Elements in matrix D depend on coefficients of inbreeding
- Recap: From the simple decomposition of a, we derived

/ . .

Replace \sigma_a^2 with \sigma_u^2 genetic additive variance

$$\begin{aligned} \operatorname{var}(m_i) &= \left(\frac{1}{2} - \frac{1}{4}(F_s + F_d)\right) \sigma_a^2 \\ &= \left(\frac{1}{2} - \frac{1}{4}(A_{ss} - 1 + A_{dd} - 1)\right) \sigma_a^2 \\ &= \left(1 - \frac{1}{4}(A_{ss} + A_{dd})\right) \sigma_a^2 \\ &= (D)_{ii}\sigma_a^2 \end{aligned}$$

$$ightarrow (D)_{ii} = \left(rac{1}{2} - rac{1}{4}(F_s + F_d)
ight) = \left(1 - rac{1}{4}(A_{ss} + A_{dd})
ight)$$

So far for pedigrees without inbreeding, F_s and F_d are all 0

Computation of Coefficients of Inbreeding

Computing F_s and F_d is the same as saying, we want to compute (A)ss and (A)dd

- Observation: Coefficients of inbreeding F_s and F_d can be read from (A)_{ss} and (A)_{dd} of A
- Cannot setup A to just get inbreeding coefficients
- More efficient method required
- Cholesky decomposition of A

$$A = R \cdot R^T$$

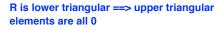
where R is a lower triangular matrix

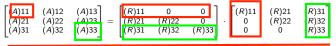
Hint: Function chol(A) in R gives matrix R^{T}

Cholesky Decomposition

Diagonal elements (A)_{ii} of A are the sum of the squared elements of one row of R

$$(A)_{ii} = \sum_{j=1}^{i} (R)_{ij}^2$$





Example of a Cholesky decomposition of a general matrix A

(A)11 = (R)11 * (R)11 = (R)11² (A)33 = (R)31² + (R)32² + (R)33²

Recursive Computation of R

Let us write the matrix R as a product of two matrices L and S:

$$R = L \cdot S$$

where L is the same matrix as in the LDL-decompositon and S is a diagonal matrix.

• Compute A as
$$A = R \cdot R^{T} = L \cdot S \cdot S \cdot L^{T} = L \cdot D \cdot L^{T}$$
• Hence

$$D = S \cdot S \quad o \quad (S)_{ii} = \sqrt{(D)_{ii}}$$

Example

(R)31 = (L)31 * (S)11 + (L)32 * (S)21 + (L)33 * S(31) = (L)31 * (S)11

$$\begin{array}{cccc} (R)11 & 0 & 0 \\ (R)21 & (R)22 & 0 \\ R)31 & (R)32 & (R)33 \end{array} = \begin{bmatrix} 1 & 0 & 0 \\ (L)21 & 1 & 0 \\ (L)31 & (L)32 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & (S)11 & 0 \\ (L)31 & 0 \end{bmatrix}$$

• Diagnoal elements $(R)_{ii} = (S)_{ii}$

▶ Because (S)_{ii} = √(D)_{ii}, if parents s and d are known diagonal elements (R)_{ii} of matrix R can be computed as

$$(R)_{ii} = (S)_{ii} = \sqrt{(D)_{ii}} = \sqrt{\left(1 - \frac{1}{4}(A_{ss} + A_{dd})\right)}$$

A_{ss} and A_{dd} are
 0 if s and d are unknown (NA) or

have been computed before

Recap matrix D

Both parents s and d of animal i are known

$$(D)_{ii} = \frac{1}{2} - \frac{1}{4}(F_s + F_d) = \frac{1}{2} - \frac{1}{4}((A)_{ss} - 1 + (A)_{dd} - 1) = 1 - \frac{1}{4}((A)_{ss} + (A)_{dd})$$

Parent s of animal i is known

$$(D)_{ii} = rac{3}{4} - rac{1}{4}F_s = rac{3}{4} - rac{1}{4}((A)_{ss} - 1) = 1 - rac{1}{4}(A)_{ss}$$

Both parents unknown

$$(D)_{ii} = 1$$

Offdiagonal Elements of R

• Offdiagnoal elements $(R)_{ij}$ of R are computed as

$$(R)_{ij} = (L)_{ij} * (S)_{jj}$$

• Use property of L: $L_{ij} = \frac{1}{2}((L)_{sj} + (L)_{dj})$ if s and d are parents of i

$$\begin{aligned} [R]_{ij} &= (L)_{ij} * (S)_{jj} \\ &= \frac{1}{2} \left[(L)_{sj} + (L)_{dj} \right] * (S)_{jj} \\ &= \frac{1}{2} \left[(L)_{sj} * (S)_{jj} + (L)_{dj} * (S)_{jj} \right] \\ &= \frac{1}{2} \left[(R)_{sj} + (R)_{dj} \right] \end{aligned}$$

Example Pedigree

Elements of matrix R can be computed with two rules

1. Diagonal elements (R)ii are based on (A)ss and (A)dd 2. Off-diagonal elements (R)ij are computed based on (R)sj and (R)dj

Calf	Sire	Dam
1	NA	NA
2	NA	NA
3	NA	NA
4	1	2
5	3	2
6	4	5

Computations

- Compute diagonal elements $(A)_{ii}$ of A to get F_i
- Prerequisite: Pedigree sorted such that parents before progeny
- Start with (A)₁₁

Animal 1:
$$(A)_{11} = (R)_{11}^2 = (D)_{11} = 1$$

from this we get the inbreeding coefficient F_1 of animal 1 to be $F_1 = (A)11 - 1 = 0$

Animal 2

•
$$(A)_{22} = (R)_{21}^2 + (R)_{22}^2 = 0 + 1 = 1$$

► $(A)_{33} = (R)_{31}^2 + (R)_{32}^2 + (R)_{33}^2 = 0 + 0 + 1 = 1$ (R)31 = (L)31 * (S)11 = 0 * 1 = 0

(L)31 is 0 because from the rule that (L)ij = $1/2^{*}(L)sj + (L)dj$ with parents s and d being unknown, (L)sj = (L)dj = 0

Animals With Known Parents

$$\begin{aligned} (A)_{44} &= (R)_{41}^2 + (R)_{42}^2 + (R)_{43}^2 + (R)_{44}^2 \\ &= (\frac{1}{2}(R_{11} + R_{21}))^2 + (\frac{1}{2}(R_{12} + R_{22}))^2 + (\frac{1}{2}(R_{13} + R_{23}))^2 \\ &+ \left(1 - \frac{1}{4}(A_{11} + A_{22})\right) \\ &= \frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1 \end{aligned}$$

