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> Including a new trait in a breeding program always starts with estimation of 
variance components
> Goal: split the observable variation in phenotypic observations into their source 
according to the model that we want to use in our evaluations
> Need to determine a model: 
 * fixed linear effect models: sources of variation: random residuals
 * mixed linear effect models: sources of variation: residuals, 
breeding values => genetic additive variance \sigma_u^2



Why

I Predictions of breeding values using BLUP requires variance
components σ2

u or σ2
s and σ2

e
I So far we have assumed that they are known
I In reality: must be estimated from data



Sire Model

I Start with a simple sire model

y = Xβ + Zss + e

with var(e) = R, var(s) = Asσ
2
s and var(y) = ZsAsZT

s σ
2
s + R

I As : numerator relationship for sires
I σ2

s corresponds to 0.25 ∗ σ2
u

I R = I ∗ σ2
e

→ estimate σ2
s and σ2

e from data



Analysis of Variance (ANOVA)

Source Degrees of Freedom (df ) Sums of Squares (SSQ)

Overall (µ) Rank(X) = 1 yT X(XT X)−1XT y = F
Sires (s) Rank(Zs ) − Rank(X) = q − 1 yT Zs (ZT

s Zs )−1ZT
s y − yT X(XT X)−1XT y = S

Residual (e) n − Rank(Zs ) = n − q yT y − yT Zs (ZT
s Zs )−1ZT

s y = R

Total n yT y

pvr
Principle: Decomposition of sum of squares into the different source, and 
source are determined by the model

pvr
Sources of variation are all components that are present in a model

pvr
Why sum of squares? Fixed linear effect model: residual variance estimate 
is based on the sum of the square residuals.



Sums of Squares

F = yT X (XT X )−1XT y = 1
n

[ n∑
i=1

yi

]2

S = yT Zs(ZT
s Zs)−1ZT

s y−yT X (XT X )−1XT y =
q∑

i=1

1
ni

 ni∑
j=1

yij

2

−F

R = yT y − yT Zs(ZT
s Zs)−1ZT

s y =
n∑

i=1
y2

i − S − F



Estimates

I β and s fixed
I Estimates of σ2

e and σ2
s are based on observed sums of squares

S and R
I Set their expected values equal to the observed sums of

squares

E (R) = (n − q)σ2
e

E (S) = (q − 1)σ2
e + tr(ZsMZs)σ2

s

where M = I − X (XT X )−1XT and q is the number of sires.

→ σ̂2
e = R

n−q and σ̂2
s = S−(q−1)σ̂2

e
tr(ZsMZs )

pvr
Estimates of variance components \sigma_e^2 and \sigma_s^2 
are obtained by replacing expected values of S and R by their observed 
values and by replacing the variance components by their estimates

pvr
R = (n-q)  * \hat{\sigma_e^2} ==>  \hat{\sigma_e^2} = R /(n-q)



Numerical Example

Table 1: Small Example Dataset for Variance Components Estimation
Using a Sire Model

Animal Sire WWG

4 2 2.9
5 1 4.0
6 3 3.5
7 2 3.5

I Model

yij = µ+ sj + ei



Design Matrices

X =


1
1
1
1

 , Zs =


0 1 0
1 0 0
0 0 1
0 1 0





ANOVA

An analysis of variance can be constructed as

Source Degrees of Freedom (df ) Sums of Squares (SSQ)

Overall (µ) Rank(X ) = 1 F = 48.3025
Sires (s) Rank(Zs)− Rank(X ) = q − 1 S = 0.4275
Residual (e) n − Rank(Zs) = n − q R = 0.18



Estimates

M =


0.75 −0.25 −0.25 −0.25
−0.25 0.75 −0.25 −0.25
−0.25 −0.25 0.75 −0.25
−0.25 −0.25 −0.25 0.75



ZT
s MZs =

 0.75 −0.5 −0.25
−0.5 1 −0.5
−0.25 −0.5 0.75





Results

σ̂2
e = R = 0.18

σ̂2
s = S − (q − 1)σ̂2

e
tr(ZT

s MZs) = 0.4275− 2 ∗ 0.18
2.5 = 0.027



Anova in R

I Assume dataset is stored in dataframe called
tbl_num_ex_chp12

tbl_num_ex_chp12$Sire <- as.factor(tbl_num_ex_chp12$Sire)
aov_result <- aov(WWG ~ Sire, data = tbl_num_ex_chp12)
summary(aov_result)

## Df Sum Sq Mean Sq F value Pr(>F)
## Sire 2 0.4275 0.2137 1.187 0.544
## Residuals 1 0.1800 0.1800

pvr
Problem with ANOVA: In certain datasets, estimates of variance components can 
get negative and they are therefore not valid, because variance components must 
be non-negative.




Likelihood

I Definition of likelihood

L(µ,Σ) = f (y |µ,Σ)

with

fY (y |µ,Σ) = 1√
(2π)ndet(Σ)

exp
{
−1
2(y − µ)T Σ−1(y − µ)

}

pvr
Conditional density of the observations 
y given the parameter \mu and \Sigma. 
Very often the density f is taken to be 
a normal distribution, then  \mu is the mean
and \Sigma is the variance.

pvr

pvr
multivariate normal distribution

pvr
Central Limit Theorem: the distribution of the sum of very many very small effects 
will converge to a normal distribution. 
Infinitesimal model: genetic additive effects (small, many)



Maximum Likelihood

I Maximize L(µ,Σ) with respect to Σ

Σ̂ = argmaxΣL(µ,Σ)



Bayesian Approach

I Estimates of unknown quantity Σ based on posterior
distribution of unknowns given knowns

I Using Bayes Theorem:

f (Σ|y) = f (Σ, y)
f (y)

= f (y |Σ)f (Σ)
f (y)

∝ f (y |Σ)f (Σ)

where f (Σ): prior distribution and f (y |Σ): likelihood



Bayesian Estimates

I Fixed Linear Model with Σ =
[
σ2

s
σ2

e

]
I Full conditional distributions

I sire variance: f (σ2
s |σ2

e , y) has a given standard distribution
I residual variance: f (σ2

e |σ2
s , y) has a given standard distribution

I Draw random numbers from full conditional distributions in
turn

I Result will be samples from posterior distribution
I Estimates are computed as empirical means and standard

deviation based on the samples, e.g for σ2
s

σ̂2
s Bayes = 1

N

N∑
t=1

(σ2
s )(t)


