Variance Components Estimation

Peter von Rohr

04 December 2020

> Including a new trait in a breeding program always starts with estimation of variance components

> Goal: split the observable variation in phenotypic observations into their source according to the model that we want to use in our evaluations

- **> Need to determine a model:**
- *** fixed linear effect models: sources of variation: random residuals**

 *** mixed linear effect models: sources of variation: residuals, breeding values => genetic additive variance \sigma_u^2**

- \triangleright Predictions of breeding values using BLUP requires variance components σ_u^2 or σ_s^2 and σ_e^2
- \triangleright So far we have assumed that they are known
- \blacktriangleright In reality: must be estimated from data

Sire Model

 \triangleright Start with a simple sire model

$$
y = X\beta + Z_s s + e
$$

with $var(e) = R$, $var(s) = A_s \sigma_s^2$ and $var(y) = Z_s A_s Z_s^T \sigma_s^2 + R_s^2$

 \blacktriangleright A_s : numerator relationship for sires ► σ_s^2 corresponds to 0.25 $*\sigma_u^2$ $\blacktriangleright R = I * \sigma_e^2$

 \rightarrow estimate $\sigma_{\bm{s}}^2$ and $\sigma_{\bm{e}}^2$ from data

Analysis of Variance (ANOVA)

Principle: Decomposition of sum of squares into the different source, and source are determined by the model

Sources of variation are all components that are present in a model

Why sum of squares? Fixed linear effect model: residual variance estimate is based on the sum of the square residuals.

Sums of Squares

$$
F = y^T X (X^T X)^{-1} X^T y = \frac{1}{n} \left[\sum_{i=1}^n y_i \right]^2
$$

$$
S = y^{T} Z_{s} (Z_{s}^{T} Z_{s})^{-1} Z_{s}^{T} y - y^{T} X (X^{T} X)^{-1} X^{T} y = \sum_{i=1}^{q} \frac{1}{n_{i}} \left[\sum_{j=1}^{n_{i}} y_{ij} \right]^{2} - F
$$

$$
R = y^T y - y^T Z_s (Z_s^T Z_s)^{-1} Z_s^T y = \sum_{i=1}^n y_i^2 - S - F
$$

Estimates

Estimates of variance components \sigma_e^2 and \sigma_s^2 are obtained by replacing expected values of S and R by their observed values and by replacing the variance components by their estimates

- \blacktriangleright *β* and *s* fixed
- Estimates of σ_e^2 and σ_s^2 are based on observed sums of squares S and R
- \triangleright Set their expected values equal to the observed sums of squares

$$
E(R)=(n-q)\sigma_e^2
$$

 $R = (n-q) * \hat{\sigma}_e^2 = \hat{\sigma}_e^2 = R/(n-q)$

$$
E(S)=(q-1)\sigma_e^2+tr(Z_s M Z_s)\sigma_s^2
$$

where $M=I-X(X^TX)^{-1}X^T$ and q is the number of sires.

$$
\rightarrow \widehat{\sigma_e^2} = \frac{R}{n-q} \text{ and } \widehat{\sigma_s^2} = \frac{S - (q-1)\widehat{\sigma_e^2}}{tr(Z_s M Z_s)}
$$

Numerical Example

Table 1: Small Example Dataset for Variance Components Estimation Using a Sire Model

$$
y_{ij} = \mu + s_j + e_i
$$

Design Matrices

$$
X = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, Z_s = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
$$

ANOVA

An analysis of variance can be constructed as

Estimates

$$
M = \begin{bmatrix} 0.75 & -0.25 & -0.25 & -0.25 \\ -0.25 & 0.75 & -0.25 & -0.25 \\ -0.25 & -0.25 & 0.75 & -0.25 \\ -0.25 & -0.25 & -0.25 & 0.75 \end{bmatrix}
$$

$$
Z_s^T M Z_s = \begin{bmatrix} 0.75 & -0.5 & -0.25 \\ -0.5 & 1 & -0.5 \\ -0.25 & -0.5 & 0.75 \end{bmatrix}
$$

Results

$$
\hat{\sigma}_e^2 = R = 0.18
$$

$$
\hat{\sigma}_s^2 = \frac{S - (q - 1)\hat{\sigma}_e^2}{tr(Z_s^T M Z_s)} = \frac{0.4275 - 2 \times 0.18}{2.5} = 0.027
$$

Anova in R

 \triangleright Assume dataset is stored in dataframe called tbl_num_ex_chp12 tbl_num_ex_chp12**\$**Sire <- **as.factor**(tbl_num_ex_chp12**\$**Sire) aov result <- aov(WWG ~ Sire, data = tbl num ex chp12) **summary**(aov_result)

Problem with ANOVA: In certain datasets, estimates of variance components can get negative and they are therefore not valid, because variance components must be non-negative.

Likelihood

 \blacktriangleright Definition of likelihood

Conditional density of the observations y given the parameter \mu and \Sigma. Very often the density f is taken to be a normal distribution, then \mu is the mean and \Sigma is the variance.

 $L(\mu, \Sigma) = f(\nu | \mu, \Sigma)$

with

$$
f_Y(y|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} exp\left\{-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)\right\}
$$

multivariate normal distribution

Central Limit Theorem: the distribution of the sum of very many very small effects will converge to a normal distribution. Infinitesimal model: genetic additive effects (small, many)

Maximum Likelihood

I Maximize $L(\mu, \Sigma)$ with respect to Σ

$$
\hat{\Sigma} = \text{argmax}_{\Sigma} L(\mu, \Sigma)
$$

Bayesian Approach

- Estimates of unknown quantity Σ based on posterior distribution of unknowns given knowns
- ▶ Using Bayes Theorem:

$$
f(\Sigma|y) = \frac{f(\Sigma, y)}{f(y)}
$$

$$
= \frac{f(y|\Sigma)f(\Sigma)}{f(y)}
$$

$$
\propto f(y|\Sigma)f(\Sigma)
$$

where $f(\Sigma)$: prior distribution and $f(y|\Sigma)$: likelihood

Bayesian Estimates

• Fixed Linear Model with
$$
\Sigma = \begin{bmatrix} \sigma_s^2 \\ \sigma_e^2 \end{bmatrix}
$$

- \blacktriangleright Full conditional distributions
	- Sire variance: $f(\sigma_s^2 | \sigma_{e}^2, y)$ has a given standard distribution
	- residual variance: $f(\sigma_e^2 | \sigma_s^2, y)$ has a given standard distribution
- \triangleright Draw random numbers from full conditional distributions in turn
- \blacktriangleright Result will be samples from posterior distribution
- \blacktriangleright Estimates are computed as empirical means and standard deviation based on the samples, e.g for $\sigma_{\bm{s}}^2$

$$
\widehat{\sigma_s^2}_{Bayes} = \frac{1}{N} \sum_{t=1}^{N} (\sigma_s^2)^{(t)}
$$