Variance and Inbreeding

Peter von Rohr

2020-11-06

Assumption

- ▶ Variance of breeding value u_i : $var(u_i) = (A)_{ii}\sigma_u^2$
- ▶ Diagnoal elements of numerator relationship matrix *A*

$$(A)_{ii}=(1+F_i)$$

where

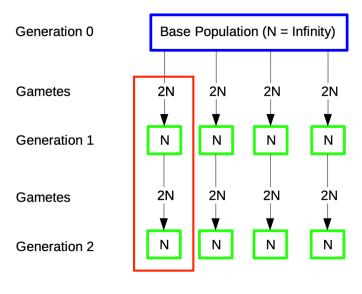
 F_i inbreeding coefficient of animal i σ_u^2 genetic additive variance

- ▶ The higher F_i, the higher the similarity, the higher the variance
- \rightarrow Contradiction?

Variance and Inbreeding

- Relationship between variance and inbreeding
- ▶ How does inbreeding affect the genetic variance?
- How do we get inbreeding in a population?
- → Population separates into different lines

Population with Inbreeding



Line 1

Assumptions

- N individuals
- self-fertilizing, shedding constant rate of eggs and sperm
- at a given locus: alleles in base population are non-identical by descent
- N individuals produce 2N gametes (eggs and sperm) at constant rate
- ▶ probability that a pair of gametes taken at random carry identical alleles: 1/2N
- probability corresponds to the inbreeding coefficient (F)

Inbreeding Coefficient

In generation 1:

$$F_1=\frac{1}{2N}$$

- second generation
 - ▶ either de-novo match of alleles or
 - the same alleles from generation 1

$$F_2 = \frac{1}{2N} + (1 - \frac{1}{2N}) * F_1$$

▶ new variable $\Delta F = \frac{1}{2N}$, then

$$F_2 = \Delta F + (1 - \Delta F) * F_1$$

continue with F3, F4, ...

Inbreeding Coefficient II

- Generation t: $F_t = \Delta F + (1 \Delta F) * F_{t-1}$
- ▶ Solving for ΔF

$$\Delta F = \frac{F_t - F_{t-1}}{1 - F_{t-1}}$$

Panmicitic Index P = 1 - F

$$\frac{P_t}{P_{t-1}} = 1 - \Delta F$$

$$P_t = (1 - \Delta F)^t * P_0 \text{ with } P_0 = 1$$

$$F_t = 1 - (1 - \Delta F)^t$$

Inbreeding coefficient Ft in generation t as a function of the Increase of F and the generation number t

Variance of Gene Frequency

- ▶ Allele frequencies (p and q) no longer constant in lines \rightarrow variation
- ightharpoonup Variance of change of q (same for p)

$$\sigma_{\Delta q}^2 = \frac{p_0 q_0}{2N} = p_0 q_0 \Delta F$$

▶ Variance of q (same for p)

$$\sigma_a^2 = p_0 q_0 F$$

Genotype Frequencies

- Average genotype frequency of homozygotes across all lines: q^2
- Definition of variance

$$\sigma_q^2 = \bar{q^2} - \bar{q}^2$$

where \bar{q} is the mean allele frequency across all lines and hence is the same as q_0 in the base population

▶ Therefore

$$\bar{q^2} = q_0^2 + \sigma_q^2 = q_0^2 + p_0 q_0 F$$

Genotype Frequencies II

Table 1: Genotype Frequencies for a bi-allelic locus, expressed in terms of inbreeding coefficient ${\cal F}$

Genotype	Original Frequencies	Changes due to inbreeding
$ \begin{array}{c} A_1 A_1 \\ A_1 A_2 \\ A_2 A_2 \end{array} $	$p_0^2 \ 2p_0q_0 \ q_0^2$	$+p_0q_0F$ $-2p_0q_0F$ $+p_0q_0F$

Base Population

Later generations with lines

Changes of Mean Value

Table 2: Derivation of Inbreeding Depression

Genotype	Frequency	Value	Product
$ \begin{array}{c} A_1 A_1 \\ A_1 A_2 \\ A_2 A_2 \end{array} $	$egin{aligned} ar{p}^2 + ar{p}ar{q}F \ 2ar{p}ar{q} - 2ar{p}ar{q}F \ ar{q}^2 + ar{p}ar{q}F \end{aligned}$	a d — a	$egin{aligned} (ar p^2 + ar par q F) a\ (2ar par q - 2ar par q F) d\ - (ar q^2 + ar par q F) a \end{aligned}$

Sum of Product-Column corresponds to MF

Inbreeding Depression

$$\begin{aligned} M_F &= (\bar{p}^2 + \bar{p}\bar{q}F)a + (2\bar{p}\bar{q} - 2\bar{p}\bar{q}F)d - (\bar{q}^2 + \bar{p}\bar{q}F)a \\ &= a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q} - 2d\bar{p}\bar{q}F \\ &= a(\bar{p} - \bar{q}) + 2d\bar{p}\bar{q}(1 - F) \\ &= M_0 - 2d\bar{p}\bar{q}F \end{aligned}$$
Inbreeding depression

M0 is the population mean in the base population

Changes of Variance

- Only additive locus
- ► Within line: as before

$$V_{\bar{G}} = 2(\bar{pq})a^2$$

= $2p_0q_0(1-F)$
= $V_G(1-F)$

▶ New variance component: between line

$$var(M) = \sigma_M^2 = 4a^2\sigma_q^2 = 4a^2p_0q_0F = 2FV_G$$

Summary

Table 3: Partitioning of the variance in a population with inbreeding coefficient F

New source			
of variation			
between lines			

Source	Variance	
Between lines Within lines	$ 2FV_G (1-F)V_G $	
Total	$(1+F)V_G$	

Why is the variance of the true breeding value dependent on F $var(u_i) = (1 + F_i) * var(q)$?

Increased inbreeding (F) leads to a shift in the genotype frequencies, such that the frequency of heterozygous genotypes descreases, but the frequencies of homozygous genotypes increases, this leads to a higher frequency of genotypes which show larger difference between their genotypic values and therefore the variation is increased