Livestock Breeding and Genomics

Peter von Rohr

18 September 2020

Content

- Course administration
- Linear Algebra
- ► R/RStudio
- Introduction to Livestock Breeding and Genomics

Who Is Who

- Your name
- Study Major
- Why this course
- Previous experiences in animal breeding / R / statistics / ...

Goals

- Official goals from Vorlesungsverzeichnis
- Understanding basic concepts such as
 - selection
 - breeding value
 - selection response
 - difference between production and breeding
- Be able to explain certain phenomena (see next slide)
- Better understanding of statistics
- Exercises in R

Comments from farmers

- "Deep cow families" (Schweizer Bauer https://www.schweizerbauer.ch/tiere/milchvieh/einekomplette-kuh-zuechten-17854.html)
- "I have not met anybody who can explain the concept of a breeding value. My cow has a breeding value of -900 and still gives milk." (Leserbrief im Schweizer Bauer)

Information

Website: https://charlotte-ngs.github.io/lbgfs2020/
 Credit points: Written exam on 18.12.2020

Lecture plan

Type G
Plan from next week:
exercise hour: 9-10
lecture: 10-12

Course program

Week	Date	Торіс
1	18.09	Introduction to Livestock Breeding and Genomics
2	25.09	Review of Quantitative Genetics/Single Locus
3	02.10	Genetic Evaluation with diverse Information
4	09.10	Genetic Covariance Between Relatives
5	16.10	Best Linear Unbiased Prediction (BLUP) - one trait
6	23.10	BLUP - Additional Aspects
7	30.10	BLUP - Multiple Traits
8	06.11	Variance and Inbreeding
9	13.11	Variance Components Estimation
10	20.11	Genomic Selection
11	27.11	Genom-Wide Association Studies
12	04.12	Review on Selection Index Theory
13	11.12	Questions, Test Exam
14	18.12	Exam

Exercises

- Topics of each lecture are repeated in exercise
- Exercise hours can be used to work on problems
- Solutions are presented one week later
- Exercise platform: (will be available soon)

Your experiences

- ... in quantitative genetics, statistics, linear algebra
- Do you know any programming languages, if yes which one?
- What tools are you using when you work with data (projects, BSc thesis, MSc thesis)
- Were there any lectures in which you got in contact with programming languages, which ones?
- Are you interested in learning how to program?

Prerequisites

None

- all concepts will be explained
- Helpful are
 - quantitative genetics
 - statistics
 - linear algebra
 - R

Introduction to Livestock Breeding

Terminology

- Livestock breeding
- Animal breeding
- Ambiguous use
- History
 - Traditional breeding
 - Genomics

Fundamental Questions

- What is the best animal?
- ► How to find it?

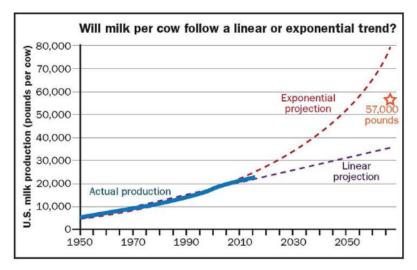
Phenotypes and Genotypes


$$P = G + E$$

where P and E are observed and G is unknown

Improving Animal Populations

- Improvement via breeding \rightarrow long-term
- Two tools
- 1. selection
 - process to determine parents of next generation
 - natural selection in wildlife and livestock
 - artificial selection in livestock: fix a goal and rank
- 2. mating
 - which animal is bred to which
 - extreme
 - complementary
 - heterosis crossbreeding


Statistics

Computer Science

- Methods have been developed in 1940's 1950's
- Progress occured later
- Development of cheap computing power

Milk Yield

Milk Performance per Cow

(Source: https://hoards.com/article-20808-what-will-dairy-cows-andfarms-look-like-in-50-years.html)

Computer Performance

Moore's Law - The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/hansistor_count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

Source: https://en.wikipedia.org/wiki/Moore%27s_law