# Genetic Evaluation

Peter von Rohr

02 Oktober 2020

# Consequences of Definition of Breeding Value

- Based on the average of a large number of offspring, because
  - offspring inherit a random sample of parental alleles
  - average over a large number of offspring reduces sampling effect
- The breeding value is defined as a deviation from the population mean
  - population mean depends on allele frequencies which are specific for each population
  - hence breeding values can only be compared within one population.
- Because the breeding value is defined as a deviation its expected value of the breeding value is 0

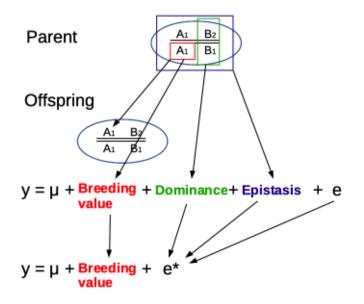
#### The Basic Model

$$y_{ij} = v_i + e_{ij}$$
$$= \mu + u_i + d_i + i_i + e_{ij}$$

#### where

- $y_{ij}$   $j^{th}$  record of animal *i*
- $\mu$  population mean
- $v_i$  genotypic value, corresponding to the sum of all additive (u), dominance (d) and epistatic  $(i_i)$  effects of the genotype of animal i
- $e_{ij}$  random environmental effects of animal i

# **Re-arranging Terms**



#### New Model

$$y_{ij} = \mu_i + u_i + e_{ij}^*$$

where

- $y_{ij}$   $j^{th}$  record of animal *i*
- $\mu_i$  identifiable fixed environmental effect
- $u_i$  sum of all additive (u) genetic effects of the genotype of animal i
- $e_{ij}^*$  dominance, epistatic and random environmental effects of animal *i*

## Infinitesimal Model

Central Limit Theorem for u<sub>i</sub> and e<sub>ij</sub> lead to multivariate normal distributions with

- E(u) = 0 and E(e) = 0 and
- Known variances and co-variances
- No co-variances between u<sub>i</sub> and e<sub>ij</sub>
- $\mu$  is assumed to be constant for a given evaluation
- Phenotypic observation y<sub>ij</sub> is the sum of two normally distributed random variables, therefore
  - y<sub>ii</sub> also follows a multivariate normal distribution

$$\blacktriangleright \vec{E}(y) = \mu$$

# Central Limit Theorem

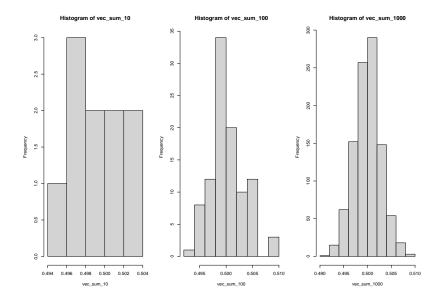
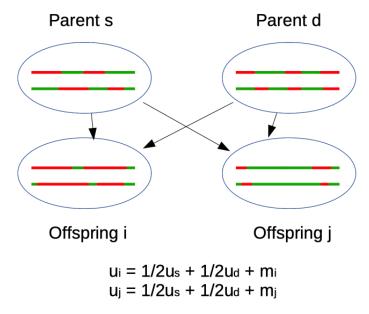


Figure 1: Distribution of Sums of Different Numbers of Components

# Decomposition of Breeding Value



# Basic Principle of Predicting Breeding Values

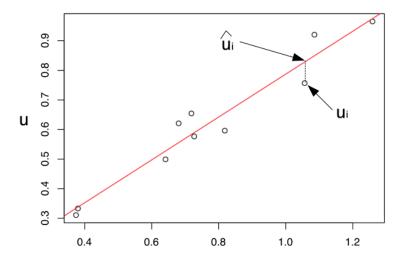
Breeding values are predicted according to the following two steps.

- 1. Observations corrected for the appropriate mean performance values of animals under the same conditions
  - conditions are described by the effects captured in  $\mu_i$ .
- 2. The corrected observations are weighted by a certain factor
  - factor reflects the amount of information available for prediction

# Animal's Own Performance - Single Record

- one phenotypic observation per animal
- **•** search for prediction  $\hat{u}_i$  of the breeding value  $u_i$  of animal *i*
- > assume  $u_i$  and  $y_i$  known for a certain population
- $\to \mathsf{plot}$

# Plot u against y



у

#### Regression

- red line denotes regression line from u<sub>i</sub> onto y<sub>i</sub>
- ▶ because phenotypes have genetic basis  $\rightarrow$  connection between  $u_i$  and  $y_i$
- measure for connection: regression coefficient b
- new model can be interpreted as regression

$$u_i = y_{ij} - \mu_i - e_{ij}^*$$

# **Regression Coefficient**

$$b = \frac{cov(u, y)}{var(y)}$$
$$= \frac{cov(u, \mu + u + e)}{var(y)}$$
$$= \frac{cov(u, u)}{var(y)}$$
$$= \frac{var(u)}{var(y)} = h^{2}$$

where  $h^2$  is called **heritability** 

#### Prediction

Given a new y<sub>i</sub>, what would be the predicted u<sub>i</sub>?
Use regression line and compute û<sub>i</sub>

$$\hat{u}_i = b * (y_i - \mu)$$
  
=  $h^2 * (y_i - \mu)$ 

#### Accuracy

Measured as correlation between true breeding value u and selection criterion y

$$r_{u,y} = \frac{cov(u, y)}{\sigma_u \sigma_y}$$
$$= \frac{\sigma_u^2}{\sigma_u \sigma_y}$$
$$= \frac{\sigma_u}{\sigma_y}$$
$$= h$$

#### **Response To Selection**

$$R = i * r_{u,y}^2 * \sigma_y = i * h^2 * \sigma_y$$

#### Repeated Records

Additional component of variation

$$var(y) = var(u) + var(pe) + var(te)$$

$$t = \frac{var(u) + var(pe)}{var(y)}$$

Predicted breeding value

$$\hat{u}_i = b(\tilde{y}_i - \mu)$$

# **Regression Coefficient**

$$b = \frac{cov(u, \tilde{y})}{var(\tilde{y})}$$

$$cov(u, \tilde{y}) = cov(u, u + pe + \frac{1}{n}\sum_{k=1}^{n} te_k) = \sigma_u^2$$

$$var(\tilde{y}) = var(u) + var(pe) + \frac{1}{n}var(te)$$

$$\operatorname{var}(\tilde{y}) = t * \sigma_y^2 + \frac{1}{n}(1-t) * \sigma_y^2$$
$$= \frac{1}{n}(n * t + (1-t))\sigma_y^2$$
$$= \frac{1+(n-1)t}{n}\sigma_y^2$$

# Putting Results together

$$b = \frac{cov(u, \tilde{y})}{var(\tilde{y})}$$
$$= \frac{n\sigma_u^2}{(1 + (n-1)t)\sigma_y^2}$$
$$= \frac{nh^2}{1 + (n-1)t}$$

# Progeny Records

$$\hat{u}_i = b * (\bar{y}_i - \mu)$$

where

$$b = \frac{cov(u_i, \bar{y}_i)}{var(\bar{y}_i)}$$

#### Covariance and Variance

$$cov(u_i, \bar{y}_i) = cov(u_i, \frac{1}{2}u_i + \frac{1}{2}\frac{1}{n}\sum_{k=1}^n u_{d,i} + \frac{1}{n}\sum_{k=1}^n m_k + \frac{1}{n}\sum_{k=1}^n e_k)$$
  
=  $cov(u_i, \frac{1}{2}u_i)$   
=  $\frac{1}{2}cov(u_i, u_i) = \frac{1}{2}\sigma_u^2$ 

$$var(ar{y_i}) = (t+(1-t)/n)\sigma_y^2$$

with  $t = \sigma_u^2/4$ 

#### Intra-Class t

Progeny mean

$$\bar{y}_i = \frac{1}{n} \sum_{k=1}^n y_k = \frac{1}{n} \sum_{k=1}^n u_k + \frac{1}{n} \sum_{k=1}^n e_k$$
$$= \frac{1}{n} \sum_{k=1}^n (1/2u_i + 1/2u_{d,k}) + \frac{1}{n} \sum_{k=1}^n e_k$$
$$= \frac{1}{2}u_i + \frac{1}{n} \sum_{k=1}^n 1/2u_{d,k} + \frac{1}{n} \sum_{k=1}^n e_k$$

Variance

$$var(\bar{y}_i) = var(\frac{1}{2}u_i) + var(\frac{1}{n}\sum_{k=1}^n 1/2u_{d,k}) + var(\frac{1}{n}\sum_{k=1}^n e_k)$$

with cov(.) = 0,  $t = var(\frac{1}{2}u_i)/var(y) = h^2/4$ 

# Results

$$b = \frac{1/2\sigma_u^2}{(t + (1 - t)/n)\sigma_y^2}$$
  
=  $\frac{1/2h^2\sigma_y^2}{(\frac{1}{4}h^2 + (1 - \frac{1}{4}h^2)/n)\sigma_y^2}$   
=  $\frac{2nh^2}{nh^2 + (4 - h^2)}$   
=  $\frac{2n}{n + (4 - h^2)/h^2}$   
=  $\frac{2n}{n + k}$ 

with 
$$k = \frac{4-h^2}{h^2}$$
.