BLUP

Peter von Rohr

09 Oktober 2020

General Principle

- All methods to predict breeding values follow the same principle
- 1. Correct information sources for some population mean
- 2. Multiply corrected information source by an appropriate factor
- Regression Method

$$\hat{u} = b(y - \mu)$$

- Selection Index
 - will be presented later
 - corresponds to multiple regression approach

$$\hat{u} = I = b^T y^*$$

where $b = P^{-1}Gw$ and y^* corrected information sources.

Problem with Correction

Population mean is ideal as correction

$$y = \mu + u + e$$
 \rightarrow $\bar{y} = \bar{\mu} + \bar{u} + \bar{e} = \mu$

- Because performances are observed in different
 - environments and
 - time points
- ► Formation of comparison groups where animals are exposed to the same environments
- ► The more groups, the better the correction of environmental effects
- ► The more groups, the smaller the single groups

Bias

- ► With small comparison groups, it is more likely that mean breeding value of animals in a single group is not 0
- Average performance of all animals in a comparison group

$$\bar{y}_{CG} = \mu + \bar{u}_{CG} + \bar{e}_{CG}$$

* If \bar{u}_{CG} is not 0, the predicted breeding value \hat{u}_i of animal i is

$$\hat{u}_i = I = b(y_i - (\mu + \bar{u}_{CG}))$$

$$= b(y_i - \mu) - b\bar{u}_{CG}$$

$$= \hat{u}_i - b\bar{u}_{CG}$$

where $b\bar{u}_{CG}$ is called bias.

Solution - BLUP

- Solution to correction problem in selection index: BLUP
- Estimates environmental effects at the same time as breeding values are predicted
- Linear mixed effects model
- Meaning of BLUP
 - **B** stands for **best** \rightarrow correlation between true (u) and its prediction (\hat{u}) is maximal or the prediction error variance $(var(u-\hat{u}))$ is minimal.
 - L stands for linear → predicted breeding values are linear functions of the observations (y)
 - U stands for unbiased → expected values of the predicted breeding values are equal to the true breeding values
 - P stands for prediction

Example

Animal	Sire	Dam	Herd	Weaning Weight
12	1	4	1	2.61
13	1	4	1	2.31
14	1	5	1	2.44
15	1	5	1	2.41
16	1	6	2	2.51
17	1	6	2	2.55
18	1	7	2	2.14
19	1	7	2	2.61
20	2	8	1	2.34
21	2	8	1	1.99
22	2	9	1	3.10
23	2	9	1	2.81
24	2	10	2	2.14
25	2	10	2	2.41
26	3	11	2	2.54
27	3	11	2	3.16
	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 2 21 2 21 2 22 2 23 2 24 2 25 2 26 3	12 1 4 13 1 4 14 1 5 15 1 5 16 1 6 17 1 6 18 1 7 19 1 7 20 2 8 21 2 8 21 2 8 22 2 9 23 2 9 24 2 10 25 2 10 26 3 11	12 1 4 1 13 1 4 1 14 1 5 1 15 1 5 1 16 1 6 2 17 1 6 2 18 1 7 2 19 1 7 2 20 2 8 1 21 2 8 1 22 2 9 1 23 2 9 1 24 2 10 2 25 2 10 2 26 3 11 2

Linear Models

Simple linear model

$$y_{ij} = \mu + herd_j + e_{ij}$$

- ► Result: Estimate of effect of herd j
- \triangleright What about breeding value u_i for animal i?
 - Problem: breeding values have a variance σ_{μ}^2
 - Cannot be specified in simple linear model
- → Linear Mixed Effects Model (LME)

$$y_{ijk} = \mu + \beta_j + u_i + e_{ijk}$$

Matrix-Vector Notation

- ► LME for all animals of a population
- \rightarrow use matrix-vector notation

$$y = X\beta + Zu + e$$

where

- y vector of length n of all observations
- β vector of length p of all fixed effects
- X $n \times p$ design matrix linking the fixed effects to the observations
- u vector of length n_u of random effects
- $Z = n \times n_u$ design matrix linking random effect to the observations
- e vector of length *n* of random residual effects.

Expected Values and Variances

Expected values

$$E(u) = 0$$
 and $E(e) = 0 \rightarrow E(y) = X\beta$

Variances

$$var(u) = G$$
 and $var(e) = R$

with $cov(u, e^T) = 0$,

$$var(y) = Z * var(u) * Z^T + var(e) = ZGZ^T + R = V$$

The Solution

$$\hat{u} = GZ^T V^{-1} (y - X\hat{\beta})$$

$$\hat{\beta} = (X^T V^{-1} X)^{-1} X^T V^{-1} y$$

Mixed Model Equations

$$\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix}$$

Sire Model

▶ Breeding value of sire as random effect:

$$y = X\beta + Zs + e$$

Example

[2.61]]	Γ1	0]		Γ1	0	0]		$\lceil e_1 \rceil$
2.31		1	0		1	0	0		<i>e</i> ₂
2.44		1	0		1	0	0		<i>e</i> ₃
2.41		1	0		1 0 0		e ₄		
2.51		0	1		1	0	0	$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} +$	<i>e</i> ₅
2.55		0	1	$\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} +$	1	0	0		<i>e</i> ₆
2.14			1		1	0	0		e ₇
2.61	0	0	1		1	0	0		<i>e</i> ₈
2.34	-	1	0		0	1	0		<i>e</i> ₉
1.99	1 1 1 0 0 0	1	0		0	1	0		e ₁₀
3.1		0		0	1	0		e_{11}	
2.81		0		0	1	0		e ₁₂	
2.14		1		0	1	0		e ₁₃	
2.41		1		0	1	0		e ₁₄	
2.54		1		0	0	1		e ₁₅	
3.16]	0	1		0	0	1		$\lfloor e_{16} floor$

Animal Model

▶ Breeding value for all animals as random effects

$$y = X\beta + Zu + e$$