Livestock Breeding and Genomics - Solution 9

Peter von Rohr

2020-11-20

Problem 1 Multivariate BLUP Animal Model

The table below contains data for pre-weaning gain (WWG) and post-weaning gain (PWG) for 5 beef calves.

Animal	Sex	Sire	Dam	WWG	PWG
4	Male	1	NA	4.5	6.8
5	Female	3	2	2.9	5.0
6	Female	1	2	3.9	6.8
7	Male	4	5	3.5	6.0
8	Male	3	6	5.0	7.5

The genetic variance-covariance matrix G_0 between the traits is

$$G_0 = \begin{bmatrix} 20 & 18 \\ 18 & 40 \end{bmatrix}$$

The residual variance-covariance matrix R_0 between the traits is

$$R_0 = \begin{bmatrix} 40 & 11\\ 11 & 30 \end{bmatrix}$$

Your Task

Set up the mixed model equations for a multivariate BLUP analysis and compute the estimates for the fixed effects and the predictions for the breeding values.

Solution

The matrices X_1 and X_2 relate records of PWG and WWG to sex effects. For both traits, we have an effect for the male and female sex. Hence the vector β of fixed effects corresponds to

$$\beta = \begin{bmatrix} \beta_{M,WWG} \\ \beta_{F,WWG} \\ \beta_{M,PWG} \\ \beta_{F,PWG} \end{bmatrix}$$

The matrices X_1 and X_2 are the same and correspond to

$$X_1 = X_2 = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 1\\ 1 & 0\\ 1 & 0 \end{bmatrix}$$

Combining them to the multivariate version leads to

$$X = \begin{bmatrix} X_1 & 0\\ 0 & X_2 \end{bmatrix}$$
$$K = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Using the matrix X together with matrix $R = I_n \otimes R_0$ to get

 $X^{T}R^{-1}X = \begin{bmatrix} 0.0834105653382762 & 0 & -0.0305838739573679 & 0 \\ 0 & 0.0556070435588508 & 0 & -0.020389249304912 \\ -0.0305838739573679 & 0 & 0.111214087117702 & 0 \\ 0 & -0.020389249304912 & 0 & 0.0741427247451344 \end{bmatrix}$

Similarly to the fixed effects, we can put together the vector of breeding values a.

$$u = \begin{bmatrix} u_{1,WWG} \\ u_{2,WWG} \\ u_{3,WWG} \\ u_{4,WWG} \\ u_{5,WWG} \\ u_{6,WWG} \\ u_{7,WWG} \\ u_{8,WWG} \\ u_{1,PWG} \\ u_{2,PWG} \\ u_{3,PWG} \\ u_{4,PWG} \\ u_{5,PWG} \\ u_{6,PWG} \\ u_{7,PWG} \\ u_{8,PWG} \end{bmatrix}$$

The design matrices Z_1 and Z_2 are equal and they link observations to breeding values.

Together with the numerator relationship matrix A we can get $G = G_0 \otimes A$ and from this $G^{-1} = G_0^{-1} \otimes A^{-1}$

$$A^{-1} = \begin{bmatrix} 1.8333 & 0.5 & 0 & -0.6667 & 0 & -1 & 0 & 0 \\ 0.5 & 2 & 0.5 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0.5 & 2 & 0 & -1 & 0.5 & 0 & -1 \\ -0.6667 & 0 & 0 & 1.8333 & 0.5 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0.5 & 2.5 & 0 & -1 & 0 \\ -1 & -1 & 0.5 & 0 & 0 & 2.5 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 2 \end{bmatrix}$$

	0.154	0.042	0	-0.056	0	-0.084	0	0	-0.069	-0.019	0	0.025	0	0.038	0	0]
	0.042	0.168	0.042	0	-0.084	-0.084	0	0	-0.019	-0.076	-0.019	0	0.038	0.038	0	0
	0	0.042	0.168	0	-0.084	0.042	0	-0.084	0	-0.019	-0.076	0	0.038	-0.019	0	0.038
	-0.056	0	0	0.154	0.042	0	-0.084	0	0.025	0	0	-0.069	-0.019	0	0.038	0
	0	-0.084	-0.084	0.042	0.21	0	-0.084	0	0	0.038	0.038	-0.019	-0.095	0	0.038	0
	-0.084	-0.084	0.042	0	0	0.21	0	-0.084	0.038	0.038	-0.019	0	0	-0.095	0	0.038
	0	0	0	-0.084	-0.084	0	0.168	0	0	0	0	0.038	0.038	0	-0.076	0
$G^{-1} =$	0	0	-0.084	0	0	-0.084	0	0.168	0	0	0.038	0	0	0.038	0	-0.076
$G^{-} =$	-0.069	-0.019	0	0.025	0	0.038	0	0	0.077	0.021	0	-0.028	0	-0.042	0	0
	-0.019	-0.076	-0.019	0	0.038	0.038	0	0	0.021	0.084	0.021	0	-0.042	-0.042	0	0
	0	-0.019	-0.076	0	0.038	-0.019	0	0.038	0	0.021	0.084	0	-0.042	0.021	0	-0.042
	0.025	0	0	-0.069	-0.019	0	0.038	0	-0.028	0	0	0.077	0.021	0	-0.042	0
	0	0.038	0.038	-0.019	-0.095	0	0.038	0	0	-0.042	-0.042	0.021	0.105	0	-0.042	0
	0.038	0.038	-0.019	0	0	-0.095	0	0.038	-0.042	-0.042	0.021	0	0	0.105	0	-0.042
	0	0	0	0.038	0.038	0	-0.076	0	0	0	0	-0.042	-0.042	0	0.084	0
	0	0	0.038	0	0	0.038	0	-0.076	0	0	-0.042	0	0	-0.042	0	0.084

Using the matrice X, Z, R^{-1} and G^{-1} , we can compute $Z^T R^{-1} X$ and $Z^T R^{-1} Z + G^{-1}$. These matrices define the coefficient matrix of the mixed model equations. But they are too be to be shown here.

The vector y of observations contains all observations of both traits

$$y = \begin{bmatrix} 4.5\\ 2.9\\ 3.9\\ 3.5\\ 5\\ 6.8\\ 5\\ 6.8\\ 6\\ 7.5 \end{bmatrix}$$

The right-hand side is computed as

$$\left[\begin{array}{c} X^T R^{-1} y\\ Z^T R^{-1} y\end{array}\right]$$

The solutions are

\sim		
$\beta_{M,WWG}$		4.3609
$\widehat{\beta_{F,WWG}}$		3.3973
$\widehat{\beta_{M,PWG}}$		6.7999
$\widehat{\beta_{F,PWG}}$		5.8803
\sim		0.1509
$u_{1,WWG}$		-0.0154
$u_{2,WWG}$		-0.0784
$u_{3,WWG}$		-0.0102
$u_{4,WWG}$		-0.2703
$u_{5,WWG}$ $u_{6,WWG}$	_	0.2758
$\widehat{u_{7,WWG}}$	_	-0.3161
$\widehat{u_{8,WWG}}$		0.2438
$\widehat{u_{1,PWG}}$		0.2796
$\widehat{u_{2,PWG}}$		-0.0076
$\widehat{u_{3,PWG}}$		-0.1703
$\widehat{u_{4,PWG}}$		-0.0127
$\widehat{u_{5,PWG}}$		-0.4778
$\widehat{u_{6,PWG}}$		0.5172
$\widehat{u_{7,PWG}}$		-0.479
$u_{\overline{8,PWG}}$		0.392

Problem 2 Comparison of Reliabilites

Compare the predicted breeding values and the reliabilities obtained as results of Problem 1 with results from two univariate analyses for the same traits are used in Problem 1. All parameters can be taken from Problem 1.

Solution

For a predicted breeding value \hat{u}_i , the reliability B_i is computed as

$$B_i = r_{u,\hat{u}}^2 = 1 - \frac{PEV(\hat{u}_i)}{var(u_i)} = 1 - \frac{C_{ii}^{22}}{var(u_i)}$$

where C_{ii}^{22} are obtained from the inverse coefficient matrix of the mixed model equations. Just as a reminder, we can write the mixed model equations (MME) as

$$M \cdot s = r$$

with the vectors r and s corresponding to the right-hand side and to the unknowns of the MME. Hence

$$r = \left[\begin{array}{c} X^T R^{-1} y \\ Z^T R^{-1} y \end{array} \right]$$

and

$$s = \left[\begin{array}{c} \hat{\beta} \\ \hat{u} \end{array} \right]$$

The matrix C^{22} is taken from the inverse coefficient matrix.

$$M^{-1} = \left[\begin{array}{cc} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + G^{-1} \end{array} \right]^{-1} = \left[\begin{array}{cc} C^{11} & C^{12} \\ C^{21} & C^{22} \end{array} \right]$$

For the two univariate analyses, we get the solutions for the fixed effects and the breeding values and their reliabilities as follows

• WWG: estimates s_{WWG} and reliabilities B_{WWG}

$$s_{WWG} = \begin{bmatrix} 4.3585\\ 3.4044\\ 0.0984\\ -0.0188\\ -0.0411\\ -0.0087\\ 0.1769\\ -0.2495\\ 0.1826\end{bmatrix}$$
$$B_{WWG} = \begin{bmatrix} 0.0578\\ 0.0158\\ 0.0158\\ 0.0871\\ 0.1446\\ 0.1438\\ 0.1154\\ 0.1163\\ 0.1553\end{bmatrix}$$

• PWG

$$s_{PWG} = \begin{bmatrix} 6.7979\\ 5.8785\\ 0.2769\\ -0.0051\\ -0.1707\\ -0.0131\\ -0.4709\\ 0.5138\\ -0.4644\\ 0.3837 \end{bmatrix}$$
$$B_{PWG} = \begin{bmatrix} 0.1022\\ 0.0307\\ 0.1547\\ 0.2563\\ 0.2529\\ 0.2119\\ 0.2154\\ 0.2705 \end{bmatrix}$$

The reliabilities from the bivariate analysis are obtained as

$$B = \begin{bmatrix} 0.0698\\ 0.0202\\ 0.1054\\ 0.1748\\ 0.1729\\ 0.1424\\ 0.1442\\ 0.1858\\ 0.1025\\ 0.0308\\ 0.155\\ 0.2569\\ 0.2534\\ 0.2124\\ 0.2159\\ 0.271 \end{bmatrix}$$