Problem 1: Breeding Values For a Monogenic Trait

We assume that the absorption of cholesterol is determined by a certain enzyme. The level of enzyme production is determined by a single bi-allelic locus \(E\). The genotype frequencies and the genotypic values for the two dairy cattle populations Original Braunvieh and Brown Swiss are given in the following table.

Variable Original Braunvieh Brown Swiss
f(E1E1) 0.0625 0.01
f(E1E2) 0.3750 0.18
f(E2E2) 0.5625 0.90
a 15.0000 29.00
d 3.0000 0.00

Hints

  • Assume that allele \(E_1\) is the allele with the positive effect on the enzyme level
  • Assume that the Hardy-Weinberg Equilibrium holds in both populations

Your Task

Compute the breeding values for all three genotypes in both populations.

Your Solution

Problem 2: Quantitative Genetics

In a population the following numbers of genotypes were counted for a given genetic locus called \(A\).

Genotypes Numbers
A1A1 24
A1A2 53
A2A2 23
  1. Compute the genotype frequencies

  2. Compute the allele frequencies

  3. Compute the population mean \(\mu\) under the following assumptions

Your Solution

LS0tCnRpdGxlOiAgTGl2ZXN0b2NrIEJyZWVkaW5nIGFuZCBHZW5vbWljcyAtIEV4ZXJjaXNlIDIKYXV0aG9yOiBQZXRlciB2b24gUm9ocgpkYXRlOiAyMDIxLTEwLTE1Cm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQojIGtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gRkFMU0UsIHJlc3VsdHMgPSAnYXNpcycpCmBgYAoKCiMjIFByb2JsZW0gMTogQnJlZWRpbmcgVmFsdWVzIEZvciBhIE1vbm9nZW5pYyBUcmFpdApXZSBhc3N1bWUgdGhhdCB0aGUgYWJzb3JwdGlvbiBvZiBjaG9sZXN0ZXJvbCBpcyBkZXRlcm1pbmVkIGJ5IGEgY2VydGFpbiBlbnp5bWUuIFRoZSBsZXZlbCBvZiBlbnp5bWUgcHJvZHVjdGlvbiBpcyBkZXRlcm1pbmVkIGJ5IGEgc2luZ2xlIGJpLWFsbGVsaWMgbG9jdXMgJEUkLiBUaGUgZ2Vub3R5cGUgZnJlcXVlbmNpZXMgYW5kIHRoZSBnZW5vdHlwaWMgdmFsdWVzIGZvciB0aGUgdHdvIGRhaXJ5IGNhdHRsZSBwb3B1bGF0aW9ucyBgT3JpZ2luYWwgQnJhdW52aWVoYCBhbmQgYEJyb3duIFN3aXNzYCBhcmUgZ2l2ZW4gaW4gdGhlIGZvbGxvd2luZyB0YWJsZS4KCmBgYHtyIHRhYmxlLWdlbm8tZnJlcS12YWx1ZSwgZWNobz1GQUxTRX0KbF9tYWYgPC0gbGlzdChvYiA9IDAuMjUsIGJzID0gMC4xKQpsX2EgPC0gbGlzdChvYiA9IDE1LCBicyA9IDI5KQpsX2QgPC0gbGlzdChvYiA9IDMsIGJzID0gMCkKdGJsX2dlbm9fZnJlcV92YWx1ZSA8LSB0aWJibGU6OnRpYmJsZShWYXJpYWJsZSA9IGMoCiAgIiRmKEVfMUVfMSkkIiwKICAiJGYoRV8xRV8yKSQiLAogICIkZihFXzJFXzIpJCIsCiAgIiRhJCIsCiAgIiRkJCIpLAogIGBPcmlnaW5hbCBCcmF1bnZpZWhgID0gYygKICAgIGxfbWFmJG9iXjIsIAogICAgMipsX21hZiRvYiooMS1sX21hZiRvYiksCiAgICAoMS1sX21hZiRvYileMiwKICAgIGxfYSRvYiwKICAgIGxfZCRvYgogICksCiAgYEJyb3duIFN3aXNzYCA9IGMoCiAgICBsX21hZiRic14yLAogICAgMipsX21hZiRicyAqICgxLWxfbWFmJGJzKSwKICAgICgxLWxfbWFmJGJzKSwKICAgIGxfYSRicywKICAgIGxfZCRicwogICkpCmtuaXRyOjprYWJsZSh0YmxfZ2Vub19mcmVxX3ZhbHVlLCBib29rdGFicyA9IFRSVUUsIGVzY2FwZSA9IEZBTFNFKQpgYGAKCgojIyMgSGludHMKKiBBc3N1bWUgdGhhdCBhbGxlbGUgJEVfMSQgaXMgdGhlIGFsbGVsZSB3aXRoIHRoZSBwb3NpdGl2ZSBlZmZlY3Qgb24gdGhlIGVuenltZSBsZXZlbAoqIEFzc3VtZSB0aGF0IHRoZSBIYXJkeS1XZWluYmVyZyBFcXVpbGlicml1bSBob2xkcyBpbiBib3RoIHBvcHVsYXRpb25zCgoKIyMjIFlvdXIgVGFzawpDb21wdXRlIHRoZSBicmVlZGluZyB2YWx1ZXMgZm9yIGFsbCB0aHJlZSBnZW5vdHlwZXMgaW4gYm90aCBwb3B1bGF0aW9ucy4gCgoKIyMjIFlvdXIgU29sdXRpb24KCgojIyBQcm9ibGVtIDI6IFF1YW50aXRhdGl2ZSBHZW5ldGljcwpJbiBhIHBvcHVsYXRpb24gdGhlIGZvbGxvd2luZyBudW1iZXJzIG9mIGdlbm90eXBlcyB3ZXJlIGNvdW50ZWQgZm9yIGEgZ2l2ZW4gZ2VuZXRpYyBsb2N1cyBjYWxsZWQgJEEkLiAKCmBgYHtyIEdlbm90eXBlRnJlcXMsIGVjaG89RkFMU0UsIHJlc3VsdHM9J2FzaXMnfQpkZkdlbm90eXBlRnJlcSA8LSBkYXRhLmZyYW1lKEdlbm90eXBlcyA9IGMoIiRBXzFBXzEkIiwgIiRBXzFBXzIkIiwgIiRBXzJBXzIkIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTnVtYmVycyAgID0gYygyNCwgNTMsIDIzKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpCmtuaXRyOjprYWJsZShkZkdlbm90eXBlRnJlcSkKYGBgCgphKSBDb21wdXRlIHRoZSBnZW5vdHlwZSBmcmVxdWVuY2llcwoKYikgQ29tcHV0ZSB0aGUgYWxsZWxlIGZyZXF1ZW5jaWVzCgpjKSBDb21wdXRlIHRoZSBwb3B1bGF0aW9uIG1lYW4gJFxtdSQgdW5kZXIgdGhlIGZvbGxvd2luZyBhc3N1bXB0aW9ucwoKKiB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBnZW5vdHlwaWMgdmFsdWVzIG9mIHRoZSBob21venlnb3VzIGdlbm90eXBlcyBpcyAkMjAkIGFuZAoqIHRoZSBnZW5vdHlwaWMgdmFsdWUgb2YgdGhlIGhldGVyb3p5Z291cyBnZW5vdHlwZSBpcyAkMiQuCgojIyMgWW91ciBTb2x1dGlvbgo=