Problem 1: Breeding Values For a Monogenic Trait
We assume that the absorption of cholesterol is determined by a certain enzyme. The level of enzyme production is determined by a single bi-allelic locus \(E\). The genotype frequencies and the genotypic values for the two dairy cattle populations Original Braunvieh
and Brown Swiss
are given in the following table.
f(E1E1) |
0.0625 |
0.01 |
f(E1E2) |
0.3750 |
0.18 |
f(E2E2) |
0.5625 |
0.90 |
a |
15.0000 |
29.00 |
d |
3.0000 |
0.00 |
Hints
- Assume that allele \(E_1\) is the allele with the positive effect on the enzyme level
- Assume that the Hardy-Weinberg Equilibrium holds in both populations
Your Task
Compute the breeding values for all three genotypes in both populations.
Your Solution
Problem 2: Quantitative Genetics
In a population the following numbers of genotypes were counted for a given genetic locus called \(A\).
Compute the genotype frequencies
Compute the allele frequencies
Compute the population mean \(\mu\) under the following assumptions
- the difference between the genotypic values of the homozygous genotypes is \(20\) and
- the genotypic value of the heterozygous genotype is \(2\).
Your Solution
LS0tCnRpdGxlOiAgTGl2ZXN0b2NrIEJyZWVkaW5nIGFuZCBHZW5vbWljcyAtIEV4ZXJjaXNlIDIKYXV0aG9yOiBQZXRlciB2b24gUm9ocgpkYXRlOiAyMDIxLTEwLTE1Cm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQojIGtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gRkFMU0UsIHJlc3VsdHMgPSAnYXNpcycpCmBgYAoKCiMjIFByb2JsZW0gMTogQnJlZWRpbmcgVmFsdWVzIEZvciBhIE1vbm9nZW5pYyBUcmFpdApXZSBhc3N1bWUgdGhhdCB0aGUgYWJzb3JwdGlvbiBvZiBjaG9sZXN0ZXJvbCBpcyBkZXRlcm1pbmVkIGJ5IGEgY2VydGFpbiBlbnp5bWUuIFRoZSBsZXZlbCBvZiBlbnp5bWUgcHJvZHVjdGlvbiBpcyBkZXRlcm1pbmVkIGJ5IGEgc2luZ2xlIGJpLWFsbGVsaWMgbG9jdXMgJEUkLiBUaGUgZ2Vub3R5cGUgZnJlcXVlbmNpZXMgYW5kIHRoZSBnZW5vdHlwaWMgdmFsdWVzIGZvciB0aGUgdHdvIGRhaXJ5IGNhdHRsZSBwb3B1bGF0aW9ucyBgT3JpZ2luYWwgQnJhdW52aWVoYCBhbmQgYEJyb3duIFN3aXNzYCBhcmUgZ2l2ZW4gaW4gdGhlIGZvbGxvd2luZyB0YWJsZS4KCmBgYHtyIHRhYmxlLWdlbm8tZnJlcS12YWx1ZSwgZWNobz1GQUxTRX0KbF9tYWYgPC0gbGlzdChvYiA9IDAuMjUsIGJzID0gMC4xKQpsX2EgPC0gbGlzdChvYiA9IDE1LCBicyA9IDI5KQpsX2QgPC0gbGlzdChvYiA9IDMsIGJzID0gMCkKdGJsX2dlbm9fZnJlcV92YWx1ZSA8LSB0aWJibGU6OnRpYmJsZShWYXJpYWJsZSA9IGMoCiAgIiRmKEVfMUVfMSkkIiwKICAiJGYoRV8xRV8yKSQiLAogICIkZihFXzJFXzIpJCIsCiAgIiRhJCIsCiAgIiRkJCIpLAogIGBPcmlnaW5hbCBCcmF1bnZpZWhgID0gYygKICAgIGxfbWFmJG9iXjIsIAogICAgMipsX21hZiRvYiooMS1sX21hZiRvYiksCiAgICAoMS1sX21hZiRvYileMiwKICAgIGxfYSRvYiwKICAgIGxfZCRvYgogICksCiAgYEJyb3duIFN3aXNzYCA9IGMoCiAgICBsX21hZiRic14yLAogICAgMipsX21hZiRicyAqICgxLWxfbWFmJGJzKSwKICAgICgxLWxfbWFmJGJzKSwKICAgIGxfYSRicywKICAgIGxfZCRicwogICkpCmtuaXRyOjprYWJsZSh0YmxfZ2Vub19mcmVxX3ZhbHVlLCBib29rdGFicyA9IFRSVUUsIGVzY2FwZSA9IEZBTFNFKQpgYGAKCgojIyMgSGludHMKKiBBc3N1bWUgdGhhdCBhbGxlbGUgJEVfMSQgaXMgdGhlIGFsbGVsZSB3aXRoIHRoZSBwb3NpdGl2ZSBlZmZlY3Qgb24gdGhlIGVuenltZSBsZXZlbAoqIEFzc3VtZSB0aGF0IHRoZSBIYXJkeS1XZWluYmVyZyBFcXVpbGlicml1bSBob2xkcyBpbiBib3RoIHBvcHVsYXRpb25zCgoKIyMjIFlvdXIgVGFzawpDb21wdXRlIHRoZSBicmVlZGluZyB2YWx1ZXMgZm9yIGFsbCB0aHJlZSBnZW5vdHlwZXMgaW4gYm90aCBwb3B1bGF0aW9ucy4gCgoKIyMjIFlvdXIgU29sdXRpb24KCgojIyBQcm9ibGVtIDI6IFF1YW50aXRhdGl2ZSBHZW5ldGljcwpJbiBhIHBvcHVsYXRpb24gdGhlIGZvbGxvd2luZyBudW1iZXJzIG9mIGdlbm90eXBlcyB3ZXJlIGNvdW50ZWQgZm9yIGEgZ2l2ZW4gZ2VuZXRpYyBsb2N1cyBjYWxsZWQgJEEkLiAKCmBgYHtyIEdlbm90eXBlRnJlcXMsIGVjaG89RkFMU0UsIHJlc3VsdHM9J2FzaXMnfQpkZkdlbm90eXBlRnJlcSA8LSBkYXRhLmZyYW1lKEdlbm90eXBlcyA9IGMoIiRBXzFBXzEkIiwgIiRBXzFBXzIkIiwgIiRBXzJBXzIkIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTnVtYmVycyAgID0gYygyNCwgNTMsIDIzKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpCmtuaXRyOjprYWJsZShkZkdlbm90eXBlRnJlcSkKYGBgCgphKSBDb21wdXRlIHRoZSBnZW5vdHlwZSBmcmVxdWVuY2llcwoKYikgQ29tcHV0ZSB0aGUgYWxsZWxlIGZyZXF1ZW5jaWVzCgpjKSBDb21wdXRlIHRoZSBwb3B1bGF0aW9uIG1lYW4gJFxtdSQgdW5kZXIgdGhlIGZvbGxvd2luZyBhc3N1bXB0aW9ucwoKKiB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBnZW5vdHlwaWMgdmFsdWVzIG9mIHRoZSBob21venlnb3VzIGdlbm90eXBlcyBpcyAkMjAkIGFuZAoqIHRoZSBnZW5vdHlwaWMgdmFsdWUgb2YgdGhlIGhldGVyb3p5Z291cyBnZW5vdHlwZSBpcyAkMiQuCgojIyMgWW91ciBTb2x1dGlvbgo=