Processing math: 100%

Problem 1: Inbreeding Coefficient

Because of very low amounts of harvested corn and grains at the end of the 18th century in central Europe, many farmers were forced to leave their contry and find a new home in the USA. In 1810 a group of farmers took a population of about 200 animals and moved to the US. After the arrival, the group formed 4 subgroups and settled in the states of Wisconsin, Virginia, Texas and Calefornia. The animals were equally partitioned to the subgroups. After the partion into the subpopulations, the animals were bred independently in the four different lines. In 1960, semen from bulls of the partitioned subpopulations was re-imported to Europe.

Assumptions

Your Task:

  • Compute the inbreeding coefficient Ft for the bulls from which semen was re-imported back into Europe.

Solution

Problem 2: Inbreeding Depression

Use the same assumptions as in Problem 1 and compute the inbreeding depression caused by the inbreeding coefficient computed in Problem 1 at two different genetic loci.

  1. Locus A is purely additive with a genotypic value of a=25. Hence the genotypic value of the heterozygous genotype is in the middle between the values of the two homozygous genotypes. In other words, the quantity d=0. The minor allele frequency (MAF) of the positive allele of locus A is p=0.1
  2. Locus B where the valud of the heterozygous genotypes B1B2 is 10 units above the mean of the homozygous genotypes, hence you can set the quantity d=10. The minor allele frequency of the positive allele of locus B is p=0.05.

Solution

Problem 3: Genetic additive Variance

Compute the between-line, the within-line and the total genetic variance for the population described in Problem 1 and the locus A of Problem 2a.

Solution

LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gRXhlcmNpc2UgOQphdXRob3I6ICJQZXRlciB2b24gUm9ociIKZGF0ZTogIjIwMjEtMTItMDMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IEZBTFNFLCByZXN1bHRzID0gJ2FzaXMnLCBmaWcucG9zID0gJ0gnKQprbml0cjo6a25pdF9ob29rcyRzZXQoaG9va19jb252ZXJ0X29kZyA9IHJtZGhlbHA6Omhvb2tfY29udmVydF9vZGcpCmBgYAoKIyMgUHJvYmxlbSAxOiBJbmJyZWVkaW5nIENvZWZmaWNpZW50CmBgYHtyIHByb2IxLXNldHVwLCBlY2hvPUZBTFNFfQpuX3BvcF9zaXplIDwtIDIwMApuX2xpbmUgPC0gNApuX3llYXJfZW1pZ3JhdGlvbiA8LSAxODEwCm5feWVhcl9zZW1lbl9pbXBvcnQgPC0gMTk2MApuX3NleF9yYXRpbyA8LSAwLjUKbl9nZW5lcmF0aW9uX2ludGVydmFsIDwtIDEwCmBgYAoKQmVjYXVzZSBvZiB2ZXJ5IGxvdyBhbW91bnRzIG9mIGhhcnZlc3RlZCBjb3JuIGFuZCBncmFpbnMgYXQgdGhlIGVuZCBvZiB0aGUgJDE4Xnt0aH0kIGNlbnR1cnkgaW4gY2VudHJhbCBFdXJvcGUsIG1hbnkgZmFybWVycyB3ZXJlIGZvcmNlZCB0byBsZWF2ZSB0aGVpciBjb250cnkgYW5kIGZpbmQgYSBuZXcgaG9tZSBpbiB0aGUgVVNBLiBJbiBgciBuX3llYXJfZW1pZ3JhdGlvbmAgYSBncm91cCBvZiBmYXJtZXJzIHRvb2sgYSBwb3B1bGF0aW9uIG9mIGFib3V0IGByIG5fcG9wX3NpemVgIGFuaW1hbHMgYW5kIG1vdmVkIHRvIHRoZSBVUy4gIEFmdGVyIHRoZSBhcnJpdmFsLCB0aGUgZ3JvdXAgZm9ybWVkIGByIG5fbGluZWAgc3ViZ3JvdXBzIGFuZCBzZXR0bGVkIGluIHRoZSBzdGF0ZXMgb2YgV2lzY29uc2luLCBWaXJnaW5pYSwgVGV4YXMgYW5kIENhbGVmb3JuaWEuIFRoZSBhbmltYWxzIHdlcmUgZXF1YWxseSBwYXJ0aXRpb25lZCB0byB0aGUgc3ViZ3JvdXBzLiBBZnRlciB0aGUgcGFydGlvbiBpbnRvIHRoZSBzdWJwb3B1bGF0aW9ucywgdGhlIGFuaW1hbHMgd2VyZSBicmVkIGluZGVwZW5kZW50bHkgaW4gdGhlIGZvdXIgZGlmZmVyZW50IGxpbmVzLiBJbiBgciBuX3llYXJfc2VtZW5faW1wb3J0YCwgc2VtZW4gZnJvbSBidWxscyBvZiB0aGUgcGFydGl0aW9uZWQgc3VicG9wdWxhdGlvbnMgd2FzIHJlLWltcG9ydGVkIHRvIEV1cm9wZS4gCgojIyBBc3N1bXB0aW9ucwoqIEFsdGhvdWdoLCBjYXR0bGUgZG9lcyBub3QgZm9sbG93IHRoZSBzYW1lIG1vZGUgb2YgaW5oZXJpdGFuY2UgYXMgdGhlIG9yZ2FuaXNtIHNob3duIGluIHRoZSBsZWN0dXJlLCB0aGUgY29tcHV0YXRpb25zIGFzIHNob3duIGluIHRoZSBsZWN0dXJlIGNhbiBiZSB1c2VkIGFzIGFuIGFwcHJveGltYXRpb24uIAoqIFRoZSByYXRpbyBvZiB0aGUgbnVtYmVyIG9mIGZlbWFsZSBhbmltYWxzIHRvIHRoZSB0b3RhbCBwb3B1bGF0aW9uIHNpemUgY2FuIGJlIGFzc3VtZWQgdG8gYmUgJGByIG5fc2V4X3JhdGlvYCQuCiogSW4gY29udHJhc3QgdG8gdGhlIHNpemUgJE4kIG9mIHRoZSBzdWJwb3B1bGF0aW9ucyB0aGF0IHdhcyBhc3N1bWVkIHRvIGJlIHRoZSBudW1iZXIgb2YgaW5kaXZpZHVhbHMsIGhlcmUgJE4kIGlzIHRoZSBudW1iZXIgb2YgZmVtYWxlIGFuaW1hbHMgaW4gYSBnaXZlbiBzdWJwb3B1bGF0aW9uLgoqIFRoZSBnZW5lcmF0aW9uIGludGVydmFsIGNhbiBiZSBhc3N1bWVkIHRvIGJlIGByIG5fZ2VuZXJhdGlvbl9pbnRlcnZhbGAgeWVhcnMuCgojIyMgWW91ciBUYXNrOgoKKiBDb21wdXRlIHRoZSBpbmJyZWVkaW5nIGNvZWZmaWNpZW50ICRGX3QkIGZvciB0aGUgYnVsbHMgZnJvbSB3aGljaCBzZW1lbiB3YXMgcmUtaW1wb3J0ZWQgYmFjayBpbnRvIEV1cm9wZS4gCgoKCiMjIyBTb2x1dGlvbgoKCgojIyBQcm9ibGVtIDI6IEluYnJlZWRpbmcgRGVwcmVzc2lvbgpgYGB7ciBleDA5cDAyLXNldHVwLCBlY2hvPUZBTFNFfQpuX2hvbV92YWx1ZSA8LSAyNQpuX21hZl9sb2N1c19hIDwtIC4xCm5fZGlmZl9oZXQgPC0gMTAKbl9tYWYgPC0gLjA1CmBgYAoKVXNlIHRoZSBzYW1lIGFzc3VtcHRpb25zIGFzIGluIFByb2JsZW0gMSBhbmQgY29tcHV0ZSB0aGUgaW5icmVlZGluZyBkZXByZXNzaW9uIGNhdXNlZCBieSB0aGUgaW5icmVlZGluZyBjb2VmZmljaWVudCBjb21wdXRlZCBpbiBQcm9ibGVtIDEgYXQgdHdvIGRpZmZlcmVudCBnZW5ldGljIGxvY2kuCgphLiBMb2N1cyAkQSQgaXMgcHVyZWx5IGFkZGl0aXZlIHdpdGggYSBnZW5vdHlwaWMgdmFsdWUgb2YgJGE9YHIgbl9ob21fdmFsdWVgJC4gSGVuY2UgdGhlIGdlbm90eXBpYyB2YWx1ZSBvZiB0aGUgaGV0ZXJvenlnb3VzIGdlbm90eXBlIGlzIGluIHRoZSBtaWRkbGUgYmV0d2VlbiB0aGUgdmFsdWVzIG9mIHRoZSB0d28gaG9tb3p5Z291cyBnZW5vdHlwZXMuIEluIG90aGVyIHdvcmRzLCB0aGUgcXVhbnRpdHkgJGQgPSAwJC4gVGhlIG1pbm9yIGFsbGVsZSBmcmVxdWVuY3kgKE1BRikgb2YgdGhlIHBvc2l0aXZlIGFsbGVsZSBvZiBsb2N1cyAkQSQgaXMgJHAgPSBgciBuX21hZl9sb2N1c19hYCQKYi4gTG9jdXMgJEIkIHdoZXJlIHRoZSB2YWx1ZCBvZiB0aGUgaGV0ZXJvenlnb3VzIGdlbm90eXBlcyAkQl8xQl8yJCBpcyAkMTAkIHVuaXRzIGFib3ZlIHRoZSBtZWFuIG9mIHRoZSBob21venlnb3VzIGdlbm90eXBlcywgaGVuY2UgeW91IGNhbiBzZXQgdGhlIHF1YW50aXR5ICRkPTEwJC4gVGhlIG1pbm9yIGFsbGVsZSBmcmVxdWVuY3kgb2YgdGhlIHBvc2l0aXZlIGFsbGVsZSBvZiBsb2N1cyAkQiQgaXMgJHAgPSBgciBuX21hZmAkLiAKCgojIyMgU29sdXRpb24KCgojIyBQcm9ibGVtIDM6IEdlbmV0aWMgYWRkaXRpdmUgVmFyaWFuY2UKQ29tcHV0ZSB0aGUgYmV0d2Vlbi1saW5lLCB0aGUgd2l0aGluLWxpbmUgYW5kIHRoZSB0b3RhbCBnZW5ldGljIHZhcmlhbmNlIGZvciB0aGUgcG9wdWxhdGlvbiBkZXNjcmliZWQgaW4gUHJvYmxlbSAxIGFuZCB0aGUgbG9jdXMgJEEkIG9mIFByb2JsZW0gMmEuIAoKCiMjIyBTb2x1dGlvbgo=