Numerator Relationship Matrix

Peter von Rohr

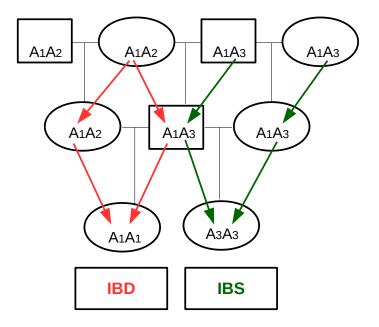
2021-11-12

Similarity Between Individuals

At the genetic level there are two different kinds of similarity

- 1. Identity by descent (IBD)
- 2. Identity by state

IBD versus IBS



Numerator Relationship Matrix

- probability of IBD alleles in two individuals: coancestry or coefficient of kinship
- additive genetic relationship between two individuals is twice their coancestry
- matrix containing all additive genetic relationships in a population is called numerator relationship matrix (A)
- A is symmetric and contains on
 - diagonal: $(A)_{ii} = (1 + F_i)$
 - off-diagonal: $(A)_{ij} = cov(u_i, u_j)/\sigma_u^2$ (with $i \neq j$)

Recursive Computation of A

If both parents s and d of animal i are known then

the diagonal element (A)_{ii} corresponds to:

$$(A)_{ii} = 1 + F_i = 1 + \frac{1}{2}(A)_{sd}$$
 and

the offdiagonal element (A)_{ji} is computed as: (A)_{ji} = ¹/₂((A)_{js} + (A)_{jd})

• because A is symmetric $(A)_{ji} = (A)_{ij}$

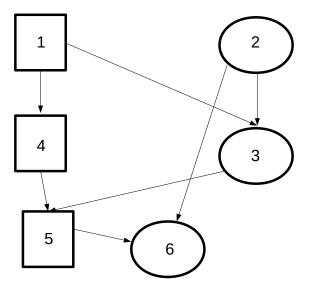
If only one parent s is known and assumed unrelated to the mate

•
$$(A)_{ii} = 1$$

•
$$(A)_{ij} = (A)_{ji} = \frac{1}{2}((A)_{js})$$

If both parents are unknown

Example



Tabular Representation of Pedigree

Table 1: Example Pedigree To Compute Additive Genetic Relationship Matrix

Dam
2
NA
3
2

Stepwise Computation of A

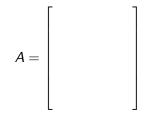
- Start by extending pedigree with animals that do not have parents
- Order animals, such that parents before progeny

Animal	Sire	Dam
1	NA	NA
2	NA	NA
3	1	2
4	1	NA
5	4	3
6	5	2

Initialize With Empty Matrix A

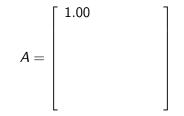
Dimensions of A: number of rows and number of columns equal to the number of animals

• Our example: 6×6



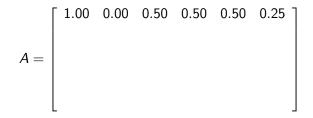
First Diagonal Element

- Compute first element $(A)_{11} = 1 + F_1$
- Animal 1 has both parents unknown $\rightarrow F_1 = 0$



Off-diagonal Elements

Assume animal *i* has parents *s* and *d* (*A*)_{*ji*} = $\frac{1}{2}((A)_{js} + (A)_{jd})$



Use Symmetry of A

Copy first row into first column

$$A = \begin{bmatrix} 1.00 & 0.00 & 0.50 & 0.50 & 0.50 & 0.25 \\ 0.00 & 0.50 & 0.50 & 0.50 \\ 0.50 & 0.50 & 0.25 & 0.25 \end{bmatrix}$$

Remaining Elements of A

Continue with rows and columns 2 to 6 using the same recipe

Final Result

Α

	[1.0000	0.0000	0.5000	0.5000	0.5000	[0.2500]
	0.0000	1.0000	0.5000	0.0000	0.2500	0.6250
_	0.5000	0.5000	1.0000	0.2500	0.6250	0.5625
=	0.5000	0.0000	0.2500	1.0000	0.6250	0.3125
	0.5000	0.2500	0.6250	0.6250	1.1250	0.6875
	$\left[\begin{array}{c} 1.0000\\ 0.0000\\ 0.5000\\ 0.5000\\ 0.5000\\ 0.2500\end{array}\right]$	0.6250	0.5625	0.3125	0.6875	1.1250

The Inverse Numerator Relationship Matrix

- Recap: Henderson's mixed model equations depend on four matrices
- 1. Design matrix X for the fixed effects
- 2. Design matrix Z for the random effects
- 3. The inverse variance-covariance matrix R^{-1} for the residuals e and
- 4. The inverse variance-covariance matrix G^{-1} for the random breeding values *a*.

Animal Model

 Breeding values of all individuals as random effects
Variance-Covariance matrix *G* corresponds to variance-covariance matrix of breeding values

$$G = A * \sigma_u^2$$

▶ We need: G^{-1}

$$G^{-1} = A^{-1} * \frac{1}{\sigma_{\mu}^2}$$

Need For Efficient Computation of A-1

- In practical livestock breeding evaluations A is very large
- Dimensions of A can be $10^7 \times 10^7$
- Explicit general inversion not possible
- Special structure of A^{-1} leads to efficient computation