Basics of Quantitative Genetics

Peter von Rohr

2021-10-01

Background

- ▶ Central Dogma of Molecular Biology
- \rightarrow Genotypes are the basis for phenotypic expression
	- ▶ Start with simple model
- \rightarrow one locus that affects quantitative trait

Population

Terminology

- ▶ **alleles**: variants occuring at a given genetic Locus
- \triangleright **bi-allelic**: only two alleles, e.g., G_1 and G_2 at a given locus G in population
- ▶ **genotype**: combination of two alleles at locus G in an individual
- **homozygous**: genotypes G_1G_1 and G_2G_2 where both alleles identical
- **heterozygous**: genotype G_1 G_2 different alleles

Frequencies in Example Population

▶ **genotype frequencies**

$$
f(G_1G_1) = \frac{4}{10} = 0.4
$$

$$
f(G_1G_2) = \frac{3}{10} = 0.3
$$

$$
f(G_2G_2) = \frac{3}{10} = 0.3
$$

▶ **allele frequencies**

$$
f(G_1) = f(G_1G_1) + \frac{1}{2} * f(G_1G_2) = 0.55
$$

$$
f(G_2) = f(G_2G_2) + \frac{1}{2} * f(G_1G_2) = 0.45
$$

Hardy-Weinberg Equilibrium

▶ **allele frequencies**

$$
f(G_1) = p, f(G_2) = q = 1 - p
$$

▶ **genotype frequencies**

$$
f(G_1G_1)=p^2, f(G_1G_2)=2pq, f(G_2G_2)=q^2
$$

Genotypic Values

Population Mean

 \blacktriangleright Expected value of genotypic value V as discrete random variable

$$
\mu = V_{11} * f(G_1G_1) + V_{12} * f(G_1G_2) + V_{22} * f(G_2G_2)
$$

= $a * p^2 + d * 2pq + (-a) * q^2$
= $(p - q)a + 2pqd$

Breeding Values Definition

The breeding value of an animal i is defined as two times the difference between the mean value of offsprings of animal i and the population mean.

Derivation of Breeding value for G_1G_1

Computation of Breeding value for G_1G_1

$$
\mu_{11}=p*a+q*a
$$

The breeding value BV_{11} corresponds to

$$
BV_{11} = 2 * (\mu_{11} - \mu)
$$

= 2 (pa + qd - [(p - q)a + 2pqd])
= 2 (pa + qd - (p - q)a - 2pqd)
= 2 (qd + qa - 2pqd)
= 2 (qa + qd(1 - 2p))
= 2q (a + d(1 - 2p))
= 2q (a + (q - p)d)

Computation of Breeding value for G_2G_2

$$
\mu_{22}=pd-qa
$$

The breeding value BV_{22} corresponds to

$$
BV_{22} = 2 * (\mu_{22} - \mu)
$$

= 2 (pd - qa - [(p - q)a + 2pqd])
= 2 (pd - qa - (p - q)a - 2pqd)
= 2 (pd - pa - 2pqd)
= 2 (-pa + p(1 - 2q)d)
= -2p (a + (q - p)d)

Computation of Breeding value for G_1G_2

$$
\mu_{12}=0.5pa+0.5d-0.5qa=0.5[(p-q)a+d]
$$

The breeding value BV_{12} corresponds to

$$
BV_{12} = 2 * (\mu_{12} - \mu)
$$

= 2 (0.5(*p* – *q*)*a* + 0.5*d* – [(*p* – *q*)*a* + 2*pqd*])
= 2 (0.5*pa* – 0.5*qa* + 0.5*d* – *pa* + *qa* – 2*pqd*)
= 2 (0.5(*q* – *p*)*a* + (0.5 – 2*pq*)*d*)
= (*q* – *p*)*a* + (*1* – 4*pq*)*d*
= (*q* – *p*)*a* + (*p*² + 2*pq* + *q*² – 4*pq*)*d*
= (*q* – *p*)*a* + (*p*² – 2*pq* + *q*²)*d*
= (*q* – *p*)*a* + (*q* – *p*)²*d*
= (*q* – *p*) [*a* + (*q* – *p*)*d*]

Summary of Breeding Values

with $\alpha = a + (q - p)d$

Allele Substitution

$$
BV_{12} - BV_{22} = (q - p)\alpha - (-2p\alpha)
$$

= (q - p)\alpha + 2p\alpha
= (q - p + 2p)\alpha
= (q + p)\alpha
= \alpha

$$
BV_{11} - BV_{12} = 2q\alpha - (q - p)\alpha
$$

$$
= (2q - (q - p))\alpha
$$

$$
= \alpha
$$

Dominance Deviation I

$$
V_{11} - BV_{11} = a - 2q\alpha
$$

= $a - 2q[a + (q - p)d]$
= $a - 2qa - 2q(q - p)d$
= $a(1 - 2q) - 2q^2d + 2pqd$
= $[(p - q)a + 2pqd] - 2q^2d$
= $\mu + D_{11}$

Dominance Deviation II

$$
V_{12} - BV_{12} = d - (q - p)\alpha
$$

= d - (q - p) [a + (q - p)d]
= [(p - q)a + 2pqd] + 2pqd
= μ + D₁₂

$$
V_{22} - BV_{22} = -a - (-2p\alpha)
$$

= -a + 2p [a + (q - p)d]
= [(p - q)a + 2pqd] - 2p²d
= μ + D₂₂

Summary of Values

Decomposition of Genotypic Values

$$
V_{ij} = \mu + BV_{ij} + D_{ij}
$$

Variances

$$
Var[X] = \sum_{x_i \in \mathcal{X}} (x_i - \mu_X)^2 * f(x_i)
$$

where \mathcal{X} : set of all possible x-values $f(x_i)$ probability that x assumes the value of x_i μ_X expected value $E[X]$ of X

Variance Computation

$$
\sigma_G^2 = Var[V] = (V_{11} - \mu)^2 * f(G_1G_1) + (V_{12} - \mu)^2 * f(G_1G_2) + (V_{22} - \mu)^2 * f(G_2G_2)
$$

where $\mu = (p - q)a + 2pqd$ the population mean.

Simplification

$$
\sigma_G^2 = Var[V] = (BV_{11} + D_{11})^2 * f(G_1G_1)
$$

+
$$
(BV_{12} + D_{12})^2 * f(G_1G_2)
$$

+
$$
(BV_{22} + D_{22})^2 * f(G_2G_2)
$$

Result

$$
\sigma_G^2 = 2pq\alpha^2 + (2pqd)^2
$$

$$
= \sigma_A^2 + \sigma_D^2
$$

Two and more Loci

- \blacktriangleright Two loci G and H having an effect on the same quantitative trait.
- \triangleright Effect of one locus can have an influence on the effect of the other locus
- → **Interaction** between loci
	- \blacktriangleright Interaction is quantified by

$$
I_{GH}=V-V_G-V_H\,
$$

where V is the total genotypic value, V_G and V_H correspond to the genotypic values due to loci G and H , respectively

Decomposition and Collecting Terms

▶ Genotypic values can be decomposed as

 $V_G = \mu_G + BV_G + D_G$ $V_H = \mu_H + BV_H + D_H$

▶ Collecting terms leads to

$$
V = V_G + V_H + I_{GH} = \mu + U + D + I
$$

with $\mu = \mu_G + \mu_H$, $U = BV_G + BV_H$, $D = D_G + D_H$ and $I = I_{GH}$

 \triangleright Can be generalized to more than two loci.

More Than Two Loci

- \triangleright Genotypic value V influenced by an unknown number of loci: A*,* B*,* C*, . . .*,
- \blacktriangleright Decomposition of V

$$
V = V_A + V_B + V_C + \ldots + I_{ABC\ldots}
$$

where I_{ABC} is a generic Interaction term which we do not specify further here.

▶ Genotypic value of single loci

$$
V_{A_iA_j} = \mu_A + BV_{A_iA_j} + D_{A_iA_j}
$$

\n
$$
V_{B_iB_j} = \mu_B + BV_{B_iB_j} + D_{B_iB_j}
$$

\n
$$
V_{C_iC_j} = \mu_C + BV_{C_iC_j} + D_{C_iC_j}
$$

 \triangleright for a given animal k, BV and D terms are collected

$$
U_k = BV_k = BV_{A_iA_j} + BV_{B_iB_j} + BV_{C_iC_j} + \ldots
$$

$$
D_k=D_{A_iA_j}+D_{B_iB_j}+D_{C_iC_j}+\ldots
$$

Phenotype

- \blacktriangleright Including phenotypic observations y
- ▶ Central Dogma of Molecular Biology
- ▶ Decomposition

$$
y = V + E
$$

where V is the genotypic value and E is the non-genetic or environmental rest

 \blacktriangleright Insert decomposition of V as shown above