Inverse Numerator Relationship Matrix

Peter von Rohr

2021 - 11 - 26

Problem 1: Inverse Numerator Relationship Matrix

During the lecture the method of computing the inverse numerator relationship matrix A^{-1} directly was introduced. The computation is based on the LDL-decomposition. As a result, we can write

$$A^{-1} = (L^T)^{-1} \cdot D^{-1} \cdot L^{-1}$$

where $L^{-1} = I - P$, and D^{-1} is a diagonal matrix with $(D^{-1})_{ii} * \sigma_u^{-2} = var(m_i)^{-1}$.

Tasks

- Use the example pedigree given below and compute the matrices L^{-1} and D^{-1} to compute A^{-1}
- Verify your result using the function getAinv() from package pedigreemm.

Pedigree

tbl_pedigree

##	#	A tibl	ole: 6	х З	
##		Calf	Sire	Dam	
##		<int></int>	<dbl></dbl>	<dbl></dbl>	
##	1	1	NA	NA	
##	2	2	NA	NA	
##	3	3	NA	NA	
##	4	4	1	2	
##	5	5	3	2	
##	6	6	4	5	

Solution

The matrix P comes from the simple decomposition and can be constructed using the pedigree.

```
P = matrix(0, nrow = nr_animal, ncol = nr_animal)
for (i in 1:nr_animal){
  s <- tbl_pedigree$Sire[i]
  d <- tbl_pedigree$Dam[i]
  if (!is.na(s)){
    P[i,s] <- 0.5
  }</pre>
```

```
if(!is.na(d)){
    P[i,d] <- 0.5
  }
}
Ρ
        [,1] [,2] [,3] [,4] [,5] [,6]
##
## [1,] 0.0 0.0 0.0 0.0 0.0
                                    0
## [2,]
        0.0 0.0 0.0 0.0
                             0.0
                                    0
## [3,]
        0.0 0.0 0.0 0.0
                             0.0
                                    0
## [4,]
        0.5 0.5 0.0 0.0
                             0.0
                                    0
        0.0 0.5 0.5 0.0
                                    0
## [5,]
                             0.0
## [6,]
        0.0 0.0 0.0 0.5 0.5
                                    0
With that the matrix L^{-1} is
I <- diag(1, nrow = nr_animal, ncol = nr_animal)</pre>
Linv <- I - P
Linv
##
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.0 0.0 0.0 0.0 0.0
                                    0
## [2,] 0.0 1.0 0.0 0.0
                             0.0
                                    0
## [3,] 0.0 0.0 1.0 0.0
                             0.0
                                    0
## [4,] -0.5 -0.5 0.0 1.0 0.0
                                    0
## [5,] 0.0 -0.5 -0.5 0.0 1.0
                                    0
## [6,] 0.0 0.0 0.0 -0.5 -0.5
                                    1
The matrix D is obtained from package pedigreemm
ped <- pedigreemm::pedigree(sire = tbl_pedigree$Sire,</pre>
                            dam = tbl_pedigree$Dam,
                            label = as.character(1:nr_animal))
D <- pedigreemm::Dmat(ped = ped)</pre>
Dinv <- diag(1/D, nrow = nr_animal, ncol = nr_animal)</pre>
Dinv
##
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]
                0
                          0
                               0
                                    0
           1
                     0
## [2,]
           0
                     0
                          0
                               0
                                    0
                1
                                    0
## [3,]
           0
                0
                     1
                          0
                               0
## [4,]
                0
                     0
                          2
                               0
                                    0
           0
                          0
                               2
                                    0
## [5,]
           0
                0
                     0
## [6,]
           0
                0
                     0
                          0
                               0
                                    2
The inverse numerator relationship matrix is
Ainv <- t(Linv) %*% Dinv %*% Linv
Ainv
##
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.5 0.5 0.0 -1.0 0.0
                                    0
## [2,]
        0.5 2.0 0.5 -1.0 -1.0
                                    0
## [3,] 0.0 0.5 1.5 0.0 -1.0
                                    0
## [4,] -1.0 -1.0 0.0 2.5 0.5
                                   -1
## [5,]
        0.0 -1.0 -1.0 0.5 2.5
                                   -1
## [6,] 0.0 0.0 0.0 -1.0 -1.0
                                    2
```

```
\mathbf{2}
```

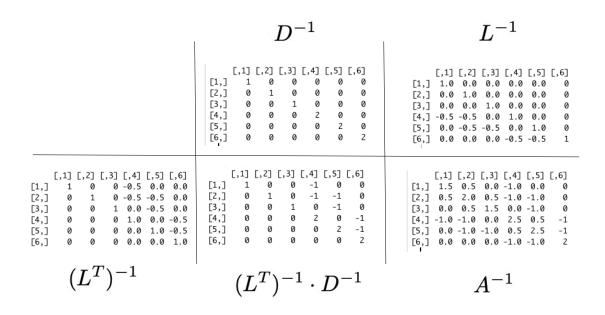
Verification

...

pealgreemm::getAinv(pea = pea)												
##	6	x 6 M	latrix	of o	class	"dgel	latr	ix"				
##		1	2	3	4	5	6					
##	1	1.5	0.5	0.0	-1.0	0.0	0					
##	2	0.5	2.0	0.5	-1.0	-1.0	0					
##	3	0.0	0.5	1.5	0.0	-1.0	0					
##	4	-1.0	-1.0	0.0	2.5	0.5	-1					
##	5	0.0	-1.0	-1.0	0.5	2.5	-1					
##	6	0.0	0.0	0.0	-1.0	-1.0	2					

Problem 2: Rules

The following diagram helps to illustrate the rules for constructing A^{-1}



Tasks

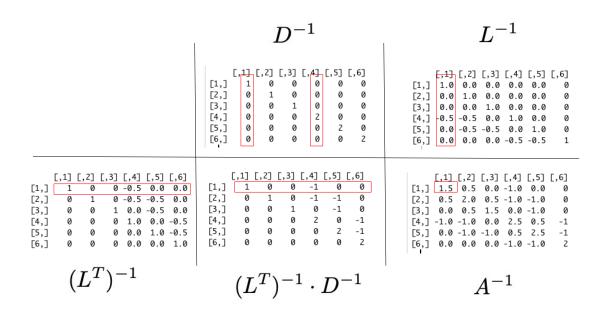
- Go through the list of animals in the pedigree and write down the contributions that are made to the different elements of matrix A^{-1}
- Based on the different contributions, try to come up with some general rules

Solution

In what follows, we use the following convention $\delta_i = (D^{-1})_{ii}$.

Animal 1

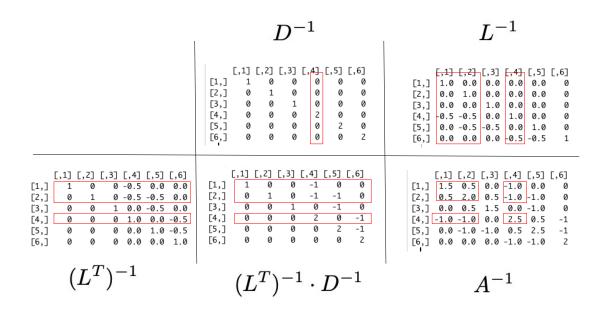
We start with animal 1.



Animal 1 has no parents and therefore the diagonal element $\delta_1 = (D^{-1})_{11}$ of matrix D^{-1} is $\delta_1 = 1$. By looking at the red boxes, we can see that δ_1 is added as a contribution to $(A^{-1})_{11}$. So far we are still missing a contribution of 0.5 to the element $(A^{-1})_{11}$. Again by inspecting the red boxes in the above diagram, we can see that this contribution corresponds to $\delta_4/4$ which comes from offspring 4 of parent 1. Hence diagonal elements of $(A^{-1})_{ss}$ corresponding to parents s of offsprint i receive $\delta_i/4$ as contribution. More details on that is obtained when inspecting the contributions of animal 4. Animals 2 and 3 do not have parents and are therefore analogous to animal 1.

Animal 4

Animal 4 has parents 1 and 2.



The red boxes in the above diagram show that for animal 4 there is a contribution of δ_4 to the diagonal. Then there are contributions of $\delta_4/4$ for the elements $(A^{-1})_{11}$, $(A^{-1})_{22}$, $(A^{-1})_{12}$ and $(A^{-1})_{21}$. Furthermore there are negative contributions of $\delta_4/2$ to $(A^{-1})_{41}$, $(A^{-1})_{14}$, $(A^{-1})_{24}$ and $(A^{-1})_{42}$.

General Rules

From this the general rules which were first published by Henderson can be deduced as

- Both Parents Known
 - add δ_i to the diagonal-element (i, i)
 - add $-\delta_i/2$ to off-diagonal elements (s,i), (i,s), (d,i) and (i,d)
 - add $\delta_i/4$ to elements (s, s), (d, d), (s, d), (d, s)
- Only One Parent Known
 - add δ_i to diagonal-element (i, i)
 - add $-\delta_i/2$ to off-diagonal elements (s,i), (i,s)
 - add $\delta_i/4$ to element (s, s)
- Both Parents Unknown
 - add δ_i to diagonal-element (i, i)