Inverse Numerator Relationship Matrix

Peter von Rohr

2021-11-26

Problem 1: Inverse Numerator Relationship Matrix

During the lecture the method of computing the inverse numerator relationship matrix A=! directly was
introduced. The computation is based on the LDL-decomposition. As a result, we can write

A—l _ (LT)—I . D—l . L—l

where L™! =T — P, and D~! is a diagonal matrix with (D™1);; * 0,2 = var(m;) ™.

Tasks

o Use the example pedigree given below and compute the matrices L~! and D~! to compute A~!
e Verify your result using the function getAinv() from package pedigreemm.

Pedigree

nr_animal <- 6
tbl_pedigree <- tibble::tibble( c(l:nr_animal),
c(NA, NA, NA, 1,3, 4),
c(NA, NA, NA, 2, 2, 5))
tbl_pedigree

## # A tibble: 6 x 3
## Calf Sire Dam
## <int> <dbl> <dbl>

#it 1 1 NA NA
## 2 2 NA NA
## 3 3 NA NA
## 4 4 1 2
## 5 5 3 2
## 6 6 4 5
Solution

The matrix P comes from the simple decomposition and can be constructed using the pedigree.

P = matrix(O0, nr_animal, nr_animal)
for (i in 1:nr_animal){
s <- tbl_pedigree$Sire[i]
d <- tbl_pedigree$Dam[i]
if (!'is.na(s)){
P[i,s] <- 0.5
}



if('is.na(d)){
P[i,d] <- 0.5

¥
}
P
i [,11 [,2]1 [,3] [,4]1 [,5] [,6]
## [1,] 0.0 0.0 0.0 0.0 0.0 0
## [2,] 0.0 0.0 0.0 0.0 0.0 0
## [3,] 0.0 0.0 0.0 0.0 0.0 0
## [4,] 0.5 0.5 0.0 0.0 0.0 0
## [5,] 0.0 0.5 0.5 0.0 0.0 0
## [6,] 0.0 0.0 0.0 0.5 0.5 0
With that the matrix L~ is
I <- diag(1, nr_animal, nr_animal)
Linv <- I - P
Linv
## [,11 [,2]1 [,3]1 [,4] [,5] [,6]
## [1,] 1.0 0.0 0.0 0.0 0.0 0
## [2,] 0.0 1.0 0.0 0.0 0.0 0
## [3,] 0.0 0.0 1.0 0.0 0.0 0
## [4,] -0.5 -0.5 0.0 1.0 0.0 0
## [5,] 0.0 -0.5 -0.5 0.0 1.0 0
## [6,] 0.0 0.0 0.0 -0.5 -0.5 1

The matrix D is obtained from package pedigreemm

ped <- pedigreemm: :pedigree( tbl_pedigree$Sire,
tbl_pedigree$Dam,
as.character(1:nr_animal))

D <- pedigreemm: :Dmat ( ped)

Dinv <- diag(1/D, nr_animal, nr_animal)
Dinv

## [,11 [,2]1 [,3]1 [,4] [,5] [,6]

## [1,] 1 0 0 0 0 0

## [2,] 0 1 0 0 0 0

## [3,] 0 0 1 0 0 0

## [4,] 0 0 0 2 0 0

## [5,] 0 0 0 0 2 0

## [6,] 0 0 0 0 0 2

The inverse numerator relationship matrix is

Ainv <- t(Linv) %*% Dinv %x*% Linv

Ainv

## [,11 [,2]1 [,31 [,41 [,5] [,6]
## [1,] 1.5 0.5 0.0 -1.0 0.0 0
## [2,] 0.5 2.0 0.5 -1.0 -1.0 0
## [3,] 0.0 0.5 1.5 0.0 -1.0 0
## [4,] -1.0 -1.0 0.0 2.5 0.5 -1
## [5,] 0.0 -1.0 -1.0 0.5 2.5 -1
## [6,] 0.0 0.0 0.0 -1.0 -1.0 2



Verification
pedigreemm: : getAInv ( ped)

## 6 x 6 Matrix of class "dgeMatrix"

## 1 2 3 4 5 6
## 1 1.5 0.5 0.0 -1.0 0.0 O
## 2 0.5 2.0 0.5 -1.0-1.0 O
## 3 0.0 0.5 1.5 0.0 -1.0 O
## 4 -1.0 -1.0 0.0 2.5 0.5 -1
## 5 0.0 -1.0 -1.0 0.5 2.5 -1
## 6 0.0 0.0 0.0 -1.0 -1.0 2

Problem 2: Rules

The following diagram helps to illustrate the rules for constructing A=!
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Tasks

e Go through the list of animals in the pedigree and write down the contributions that are made to the
different elements of matrix A~1
e Based on the different contributions, try to come up with some general rules
Solution

In what follows, we use the following convention &§; = (D~1);.



Animal 1

We start with animal 1.

D—l L—l
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Animal 1 has no parents and therefore the diagonal element §; = (D~1);; of matrix D~! is §; = 1. By
looking at the red boxes, we can see that &; is added as a contribution to (A~1)q;. So far we are still missing
a contribution of 0.5 to the element (A~1);;. Again by inspecting the red boxes in the above diagram, we
can see that this contribution corresponds to d4/4 which comes from offspring 4 of parent 1. Hence diagonal
elements of (A~1),s corresponding to parents s of offsprint i receive §;/4 as contribution. More details on
that is obtained when inspecting the contributions of animal 4. Animals 2 and 3 do not have parents and are
therefore analogous to animal 1.

Animal 4

Animal 4 has parents 1 and 2.
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The red boxes in the above diagram show that for animal 4 there is a contribution of d4 to the diagonal.
Then there are contributions of §,/4 for the elements (A=1)11, (A71)22, (A71)12 and (A~1)9;. Furthermore
there are negative contributions of §4/2 to (A7), (A7 )14, (A71)24 and (A71),0.

General Rules
From this the general rules which were first published by Henderson can be deduced as

e Both Parents Known
— add d; to the diagonal-element (4, 1%)
— add —¢;/2 to off-diagonal elements (s, 1), (4, ), (d,%) and (i,d)
— add 6;/4 to elements (s, s), (d,d), (s,d), (d,s)
¢ Only One Parent Known
— add ¢; to diagonal-element (i, %)
— add —6;/2 to off-diagonal elements (s, 1), (7, s)
— add 4;/4 to element (s, s)
o Both Parents Unknown
— add ¢; to diagonal-element (i, 1)
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