Livestock Breeding and Genomics - Solution 12

Peter von Rohr

2021-12-10

Problem 1 Marker Effect Model

We are given the dataset that is shown in the table below. This dataset contains gentyping results of 10 for 2 SNP loci.

Animal	SNP A	SNP B	Observation
1	0	0	156
2	1	0	168
3	0	1	161
4	1	0	164
5	-1	0	128
6	-1	1	124
7	0	-1	143
8	1	1	178
9	1	0	163
10	0	0	151

Your Task

- The goal of this problem is to estimate SNP marker effects using a marker effect model. Because we have just 2 SNP loci, you can use a fixed effects linear model with the 2 loci as fixed effects. Furthermore you can also include a fixed intercept into the model.
- Specify all the model components including the vector of observations, the design matrix X, the vector of unknowns and the vector of residuals.
- You can use the R-function lm() to get the solutions for estimates of the unknown SNP effects.

Solution

The fixed effects model to estimate the marker effects can be written as

$$y = X\beta + e$$

where y is the vector of observations, β is the vector of fixed effects and e is the vector of residuals. Inserting the data from the dataset into the model components leads to

$$y = \begin{bmatrix} 156\\ 168\\ 161\\ 164\\ 128\\ 124\\ 143\\ 178\\ 163\\ 151 \end{bmatrix} \beta = \begin{bmatrix} \beta_0\\ \beta_A\\ \beta_B \end{bmatrix} e = \begin{bmatrix} e_1\\ e_2\\ e_3\\ e_4\\ e_5\\ e_6\\ e_7\\ e_8\\ e_9\\ e_{10} \end{bmatrix}$$

where β_0 is the intercept and β_A and β_B correspond to the marker effects (a-values) for both SNPs A and B. The design matrix X is taken from the dataset as

$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ -1 & 0 \\ -1 & 1 \\ 0 & -1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

The solution for the intercept and the marker effects are obtained with

```
##
## Call:
## lm(formula = tbl_all_data$Observation ~ tbl_all_data$`SNP A` +
##
       tbl_all_data$`SNP B`, data = tbl_all_data)
##
  Residuals:
##
      Min
              1Q Median
                            ЗQ
##
                                  Max
                          3.02
##
    -9.40 -4.02
                   0.52
                                  7.72
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         148.280
                                       2.172
                                              68.270 3.8e-11 ***
## tbl_all_data$`SNP A`
                          20.740
                                       2.660
                                               7.797 0.000107 ***
## tbl_all_data$`SNP B`
                                       3.318
                                               1.766 0.120691
                           5.860
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 6.27 on 7 degrees of freedom
## Multiple R-squared: 0.8985, Adjusted R-squared: 0.8695
## F-statistic: 30.97 on 2 and 7 DF, p-value: 0.0003335
```

Problem 2 Breeding Value Model

Use the same data as in Problem 1 to estimate genomic breeding values using a breeding value model.

Hints

- The only fixed effect in this model is the mean μ which is the same for all observations.
- You can use the following matrix as the genomic relationship matrix

	0.141	-0.124	-0.123	-0.124	0.288	0.083	0.287	-0.329	-0.124	0.082
G =	-0.124	0.76	-0.33	0.701	-0.949	-1.155	0.082	0.495	0.701	-0.124
	-0.123	-0.33	0.757	-0.33	0.085	0.905	-0.943	0.491	-0.33	-0.123
	-0.124	0.701	-0.33	0.76	-0.949	-1.155	0.082	0.495	0.701	-0.124
	0.288	-0.949	0.085	-0.949	1.584	1.322	0.492	-1.152	-0.949	0.288
	0.083	-1.155	0.905	-1.155	1.322	2.202	-0.738	-0.333	-1.155	0.083
	0.287	0.082	-0.943	0.082	0.492	-0.738	1.576	-1.148	0.082	0.287
	-0.329	0.495	0.491	0.495	-1.152	-0.333	-1.148	1.374	0.495	-0.329
	-0.124	0.701	-0.33	0.701	-0.949	-1.155	0.082	0.495	0.76	-0.124
	0.082	-0.124	-0.123	-0.124	0.288	0.083	0.287	-0.329	-0.124	0.141
	_									

Your Tasks

• Specify all model components of the linear mixed model, including the expected values and the variance-covariance matrix of the random effects.

Solution

The breeding value model is a linear mixed effects model which can be written as

$$y = X\beta + Wu + e$$

where

- y is the vector of observations
- β is the vector of fixed effects
- u is the vector of random genomic breeding values
- e is the vector of random residuals
- X and W are design matrices linking fixed effects and genomic breeding values to observations.

Inserting the information from the dataset into the model leads to

$$y = \begin{bmatrix} 156\\ 168\\ 161\\ 164\\ 128\\ 124\\ 143\\ 178\\ 163\\ 151 \end{bmatrix} \beta = \begin{bmatrix} \mu \end{bmatrix} u = \begin{bmatrix} u_1\\ u_2\\ u_3\\ u_4\\ u_5\\ u_6\\ u_7\\ u_8\\ u_9\\ u_{10} \end{bmatrix} e = \begin{bmatrix} e_1\\ e_2\\ e_3\\ e_4\\ e_5\\ e_6\\ e_7\\ e_8\\ e_9\\ e_{10} \end{bmatrix}$$

The design matrices X and W correspond to

The expected values of the random effects are

$$E(u) = 0$$
$$E(e) = 0$$
$$E(y) = X\beta$$

The variance-covariance matrices of the random effects are

$$var(u) = G * \sigma_u^2$$

where G is the genomic relationship matrix and σ_u^2 the genetic additive variance explained by the SNPs

$$var(e) = I * \sigma_e^2 = R$$

where I is the identity matrix and σ_e^2 the residual variance.

$$var(y) = WGW^T * \sigma_u^2 + R$$

The solutions for the fixed effects are obtained from mixed model equations.

$$\begin{bmatrix} X^T X & X^T W \\ W^T X & W^T W + G^{-1} * \lambda \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T y \\ W^T y \end{bmatrix}$$

The parameter $\lambda = \sigma_e^2 / \sigma_u^2$ is the ratio between residual variance and genetic variance. We assume that this value corresponds to $\lambda = 3$.

The single components of the mixed model equations are

	50.731	1.005	1.994	1.005	-3.005	-0.012	-3.993	3.999	1.005	-1
$W^TW + G^{-1} =$	1.005	45.704	3.01	-6.027	8.037	10.042	-1	-4.022	-6.027	1.005
	1.994	3.01	42.74	3.01	0.977	-10.008	12.978	-7.974	3.01	1.994
	1.005	-6.027	3.01	45.704	8.037	10.042	-1	-4.022	-6.027	1.005
	-3.005	8.037	0.977	8.037	37.684	-10.066	-6.986	12.019	8.037	-3.005
	-0.012	10.042	-10.008	10.042	-10.066	31.669	9.985	0.046	10.042	-0.012
	-3.993	-1	12.978	-1	-6.986	9.985	30.767	15.971	-1	-3.993
	3.999	-4.022	-7.974	-4.022	12.019	0.046	15.971	35.737	-4.022	3.999
	1.005	-6.027	3.01	-6.027	8.037	10.042	-1	-4.022	45.704	1.005
	L -1	1.005	1.994	1.005	-3.005	-0.012	-3.993	3.999	1.005	50.731

with

$$rhs = \begin{bmatrix} X^T y \\ W^T y \end{bmatrix}$$
$$rhs = \begin{bmatrix} 1536.388 \\ 156.41 \\ 168.379 \\ 161.35 \\ 163.533 \\ 127.857 \\ 124.478 \\ 142.925 \\ 177.661 \\ 162.853 \\ 150.941 \end{bmatrix}$$

The solution vector for the estimate of the fixed effect μ and the genomic breeding values for all animals are given by

$$sol = \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix}$$
$$sol = \begin{bmatrix} 153.6388 \\ -3.1077 \\ 10.1654 \\ -0.2477 \\ 10.0717 \\ -16.7013 \\ -14.0022 \\ -6.1328 \\ 13.1093 \\ 10.0586 \\ -3.2134 \end{bmatrix}$$