
Chapter 4

Best Linear Unbiased
Prediction (BLUP)

The prediction of breeding values requires to correct the information sources for
an appropriate comparison value. So far we have referred to that comparison
value as the population mean and we have assumed this correction value to
be known. In reality, the computation of these comparison values is a difficult
problem. This problem is one of the reasons that nowadays the predictions of
all breeding values are based on a method that is called BLUP. In this chapter,
we first want to have a closer look at the problem of computing these correction
factors with which the information sources must be adjusted. After that, the
BLUP method will be introduced.

4.1 Problem of Correction

In theory, the population mean is the ideal correction value for all information
sources. From our standard model we can derive𝑦 = 𝜇 + 𝑢 + 𝑒 → ̄𝑦 = ̄𝜇 + �̄� + ̄𝑒 = 𝜇 (4.1)

Because, we defined the true breeding value 𝑢 and the non-identifiable environ-
mental effects 𝑒 as deviations from a common mean, the average effect of all
identifiable environmental components is captured by the population mean 𝜇.
But this is only true in an idealized population where all selection candidates
are kept in the same environment and where they deliver their performances
at the same time. In real world scenarios, this is unrealistic, because e.g. own
performance values and progeny performances cannot be delivered at the same
time. Furthermore, selection candidates are kept in different herds in different
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environments. All these factors do have an influence on the performance of
the recorded animals and hence on the predicted breeding values. But good
methods for predicting breeding values should be able to correct for such en-
vironmental influences. If that is not the case, environmental factors will bias
the predicted breeding values. To avoid such biases, performance records were
subdivided into environmental classes. In dairy cattle such classes were formed
based on herds, calving year, calving season and age at first calving. In pigs,
performance records might be divided into herds, years and fattening batches.
From now on, we call the combination of these environmental effects on the per-
formance records as identifiable systematic fixed effects. For the prediction
of breeding values, we assume that these fixed effects in a given comparison class
have all the same influence on the performance of the animals that are in the
same class. Hence if we group all animals who show the same levels of all fixed
effects into one comparison class, any biases from the identifiable environment
can be avoided.
The more environmental factors can be considered in forming the comparison
classes, the better we can correct our performance records for the environmental
effects. But when the number of environmental factors increases the number
of animals per comparison class decreases. From the statistical point of view,
the small number of observations in comparison classes reduce the accuracy
with which the environmental fixed effects can be estimated. With smaller
comparison groups, the risk that the average breeding value of animals in such
a comparison is not zero increases. In case the average breeding value in a
comparison group is not zero, predicted breeding values show a deviation which
is called bias. The occurrence of bias can be shown as follows. Let us assume
the average performance of all animals in a comparison group (CG) to be ̄𝑦𝐶𝐺:̄𝑦𝐶𝐺 = 𝜇 + �̄�𝐶𝐺 + ̄𝑒𝐶𝐺 (4.2)

In case the average breeding value �̄�𝐶𝐺 is zero, the population mean 𝜇 measures
the average identifiable environment effect. If �̄�𝐶𝐺 is not zero, then the predicted
breeding value �̂�𝑖 using an older method called selection index, the index value𝐼 corresponds to

𝐼 = 𝑏(𝑦𝑖 − (𝜇 + �̄�𝐶𝐺))= 𝑏(𝑦𝑖 − 𝜇) − 𝑏�̄�𝐶𝐺= �̂�𝑖 − 𝑏�̄�𝐶𝐺 (4.3)

The first term in the result of (4.3) corresponds to the predicted breeding value
where the second term measures the bias. This depends on the average breeding
values of the animals of the comparison group. If the average breeding value
of all animals in the comparison group is zero, then the predicted breeding
value from (4.3) is unbiased. Because we have to know the breeding values



4.2. NUMERIC EXAMPLE 49

of the animals in the comparison group to get an unbiased prediction of the
breeding value for a given animal and the breeding values of the animals in the
comparison group must also be predicted, this consists of a “chicken-and-egg”
problem which cannot be solved.
The solution to this was presented by Charles R. Henderson in several pub-
lications ((Henderson, 1973)) and (Henderson, 1975)). The key idea behind
the solution is to estimate the identifiable environmental factors as fixed ef-
fects and to predict the breeding values as random effects simultaneously in a
linear mixed effects model. The properties of the methodology developed by
Henderson are similar to those of the selection index method. But the main
advantage of Henderson’s methodologies is that phenotypic records do not need
to be corrected before breeding values can be predicted. But the effects of
the identifiable environmental factors are also a result which come out of the
analysis. The methodology developed by Henderson is called BLUP and the
properties of this methodology are directly incorporated into the name where

• B stands for best which means that the correlation between the true (𝑢)
and the predicted breeding value (�̂�) is maximal or the prediction error
variance (𝑣𝑎𝑟(𝑢 − �̂�)) is minimal.

• L stands for linear which means the predicted breeding values are linear
functions of the observations (𝑦)

• U stands for unbiased which means that the expected values of the pre-
dicted breeding values are equal to the true breeding values

• P stands for prediction

BLUP based approaches have found widespread usage in genetic evaluations.
They are used for both traditional predictions of breeding values and also for
predicting genomic breeding values. The popularity of BLUP is not only due
to the theoretical foundations behind BLUP, but Henderson has also developed
efficient algorithms to be able to compute predicted breeding values for very
large livestock breeding populations. The theoretic foundations, the develop-
ment of efficient algorithms together with the availability of large computational
resources at a very low price have made BLUP to become the de-facto standard
methodology for predicting breeding values.

4.2 Numeric Example

We want to use a concrete numeric example of a small population to explain
how breeding values are predicted using the BLUP methodology. The pheno-
typic observations consist of measurements of the trait weaning weight in beef
cattle. Table 4.1 gives an overview of the dataset.
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Table 4.1: Example Data Set for Weaning Weight in Beef Cattle

Animal Sire Dam Herd Weaning Weight
12 1 4 1 2.61
13 1 4 1 2.31
14 1 5 1 2.44
15 1 5 1 2.41
16 1 6 2 2.51
17 1 6 2 2.55
18 1 7 2 2.14
19 1 7 2 2.61
20 2 8 1 2.34
21 2 8 1 1.99
22 2 9 1 3.10
23 2 9 1 2.81
24 2 10 2 2.14
25 2 10 2 2.41
26 3 11 2 2.54
27 3 11 2 3.16

We assume the phenotypic variance (𝜎2𝑝) to be 0.1014 and the heritability (ℎ2)
corresponds to 0.25.

4.3 Linear Mixed Effects Model

A simple linear model contains fixed effects such as herd or sex of an animal
and tries to explain the observations as linear functions of such effects. Because
the effects considered in a model cannot account for all influences of a given
set of observations, every model must have a random residual component. If a
linear model contains besides the residuals any additional random effects, then
this model is called a mixed linear effects model.

4.3.1 Fixed Versus Random Effects

Unfortunately, there is no unique and generally accepted definition of which ef-
fects should be fixed and which should be random. There are generally accepted
guidelines of how to classify effects as fixed or as random. Table 4.2 lists a few
criteria that might be helpful.
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Table 4.2: Classification Factors of Fixed and Random Effects

fixed effect random effects
classes can be defined exactly realized value come from an underlying

distribution
the value of a class does not have an apriori
expected value

each realization is unique

values are exactly estimable observations are influenced by the variance of
the random effect

the expected value of a class effect is of primary
interest

main interest is on the variance not on the
expected value

fixed effects can be corrected for

Certain factors such as herd, sex, breed or feeding regimes can be classified
unambiguously as fixed effects. On the other hand breeding values are always
random effects. Because, we know that breeding values have an expected value
of 0 and have a certain variance, they must be modeled as random effects where
these properties can be integrated into the model. Furthermore, each animal
has a different realization of a breeding value. Exceptions are mono-clonal twins
and clones.

From a practical point of view, the software program that is used to analyse
the data has also an influence on whether a certain effect is treated as fixed or
as random. If a certain effect has very many levels such as herds, then it is
sometimes better for the analysis to treat such an effect as random.

4.3.2 Model Specification

In a linear mixed effects model a single observation 𝑦𝑖𝑗𝑘 is decomposed according
to equation (4.4)

𝑦𝑖𝑗𝑘 = 𝛽𝑖 + 𝑢𝑗 + 𝑒𝑖𝑗𝑘 (4.4)

where 𝛽𝑖 stands for the 𝑖−𝑡ℎ level of a fixed effect, 𝑢𝑗 is the 𝑗 − 𝑡ℎ realization
of the random effect 𝑢 and 𝑒𝑖𝑗𝑘 is the residual effect of the 𝑘−𝑡ℎ observation}.
Because, we do not want to model just one observation, but we want to include
all observations of a complete population, it is helpful to convert the model in
(4.4) into matrix-vector notation. This is shown in equation (4.5)

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 (4.5)
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where 𝑦 vector of length 𝑛 of all observations𝛽 vector of length 𝑝 of all fixed effects𝑋 𝑛 × 𝑝 design matrix linking the fixed effects to the observations𝑢 vector of length 𝑛𝑢 of random effects𝑍 𝑛 × 𝑛𝑢 design matrix linking random effect to the observations𝑒 vector of length 𝑛 of random residual effects.
Furthermore, we assume the following relations for the expected values and for
the variances. As already mentioned the random effects are defined as deviations
and hence their expected value is set to zero.𝐸(𝑢) = 0 and 𝐸(𝑒) = 0 (4.6)

From this it follows that 𝐸(𝑦) = 𝑋𝛽. The variance-covariance matrices for the
random effects are set to𝑣𝑎𝑟(𝑢) = 𝐺 and 𝑣𝑎𝑟(𝑒) = 𝑅 (4.7)

Under the assumption that 𝑐𝑜𝑣(𝑢, 𝑒𝑇 ) = 0, we can compute 𝑣𝑎𝑟(𝑦) = 𝑍∗𝑣𝑎𝑟(𝑢)∗𝑍𝑇 + 𝑣𝑎𝑟(𝑒) = 𝑍𝐺𝑍𝑇 + 𝑅 = 𝑉 .
In model (4.5) the vectors 𝛽 and 𝑢 are unknown. The solution of the model
(4.5) for the unknowns 𝛽 and 𝑢 leads to estimates ̂𝛽 for the fixed effects 𝛽 and
for predicted random effects �̂�. Unlike with the selection index, with BLUP, we
do not have to correct the observations before predicting random effects.

4.3.3 The Solution

An outline of how to derive the BLUP solutions for ̂𝛽 and �̂� will be given in an
Appendix. The details of this derivation are not important. Therefore, we are
presenting here directly the result which are�̂� = 𝐺𝑍𝑇 𝑉 −1(𝑦 − 𝑋 ̂𝛽) (4.8)

We call �̂� the best linear unbiased prediction of 𝑢 or shorter �̂� = 𝐵𝐿𝑈𝑃(𝑢). For̂𝛽, we insert the generalized least squares estimator (GLS) which corresponds tô𝛽 = (𝑋𝑇 𝑉 −1𝑋)−𝑋𝑇 𝑉 −1𝑦 (4.9)

The matrix (𝑋𝑇 𝑉 −1𝑋)− denotes the generalized inverse of the matrix(𝑋𝑇 𝑉 −1𝑋). The generalized inverse 𝐾− can be replaced with the simple
inverse 𝐾−1, whenever the columns of matrix 𝐾 are linearly independent1.

1For our examples that are shown here, we can always use the simple inverse.
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Analogously to �̂�, ̂𝛽 is called the best linear unbiased estimator of the fixed
effects 𝛽. In short, we can state ̂𝛽 = 𝐵𝐿𝑈𝐸(𝛽).
4.3.4 Mixed Model Equations

The solutions shown in (4.8) for �̂� and in (4.9) for ̂𝛽 are not suitable for practical
purposes. Both solutions contain the inverse 𝑉 −1 of matrix 𝑉 . The matrix 𝑉
corresponds to the variance-covariance matrix of all observations 𝑦. The inverse
matrix 𝑉 −1 is not easy to compute and furthermore procedures to invert general
matrices are computationally expensive and are prone to rounding errors. In
one of his many papers, Henderson has shown that the results for �̂� and ̂𝛽 are
the same when solving the following system of equations simultaneously.

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑍𝑍𝑇 𝑅−1𝑋 𝑍𝑇 𝑅−1𝑍 + 𝐺−1 ] [ ̂𝛽�̂� ] = [ 𝑋𝑇 𝑅−1𝑦𝑍𝑇 𝑅−1𝑦 ] (4.10)

The above shown equations are called mixed model equations (MME). They
do no longer contain the inverse 𝑉 1 and hence these MME are much simpler to
solve. The MME contain the inverses 𝑅−1 and 𝐺−1, but we will see with concrete
examples that they are much easier to invert. As a consequence, whenever
we have to predict breeding values using BLUP, we will use the mixed model
equations shown in (4.10).

4.4 Sire Model

The application of the linear mixed effects model from (4.5) to the numerical
example in table 4.1. As random effects 𝑢 we are taking the father 𝑠 of each
animal 𝑖 with an observation. As fixed effects 𝛽 we are using the herd effect.
When fathers are modeled as random effects, then we call this model a sire
model. Setting up a sire model for the data in table 4.1 looks as follows
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.612.312.442.412.512.552.142.612.341.993.12.812.142.412.543.16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01 01 01 00 10 10 10 11 01 01 01 00 10 10 10 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[𝛽1𝛽2] +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 00 1 00 1 00 1 00 1 00 1 00 1 00 0 10 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣𝑠1𝑠2𝑠3⎤⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒1𝑒2𝑒3𝑒4𝑒5𝑒6𝑒7𝑒8𝑒9𝑒10𝑒11𝑒12𝑒13𝑒14𝑒15𝑒16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Besides the equation for the sire model we also have to specify the expected
values and the variances of all random components. To be able to distinguish
the sire model from the general linear mixed effects model, we usually call the
random sire effect 𝑠 and no longer 𝑢. The expected values for the random
variables were already stated when discussing the general linear mixed effects
model in section 4.3.2. Hence𝐸(𝑠) = 0 and 𝐸(𝑒) = 0 → 𝐸(𝑦) = 𝑋𝛽 (4.11)

For the variances there are a few simplifications that we can use in our sire
model. The covariance between the random effects 𝑠 and 𝑒 are assumed to be0. The covariances among the single residual effects are also assumed to be 0.
Hence, the variance-covariance matrix of the residual effects are 𝑣𝑎𝑟(𝑒) = 𝐼 ∗𝜎2𝑒 .
The variance of the sire effects 𝑠 is𝑣𝑎𝑟(𝑠) = 𝐴𝑠 ∗ 𝜎2𝑠 = 𝐺
where 𝐴𝑠 is the additive genetic relationship matrix between the sires. We will
be deriving the matrix 𝐴𝑠 in a later chapter. Because our sires are not related,
we can say that 𝐴𝑠 = 𝐼 and hence

𝐺 = 𝐼 ∗ 𝜎2𝑢4
Now we are ready to set up the mixed model equations from (4.10) for the
sire model. The computation of the numerical solutions from the mixed model
equations will be the topic of an exercise.
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4.5 Animal Model

The mixed model equations are a universal tool to find BLUPs of random effects
and BLUEs of fixed effect simultaneously. On the other hand it is not satisfac-
tory that with the sire model only sires obtain predicted breeding values. All
information that is known about the mothers was completely ignored when we
specified the sire model. A better approach would be to combine all available
information from a given population. This can be done by replacing in the sire
model the random sire effects by random animals effects. As a result each an-
imal in the dataset receives a random effect which models its breeding value.
This type of model is called an animal model. Because the animal model has
the breeding values of all animals as random effects, they are often referred to
with the variable or the vector 𝑎2 and no longer 𝑠 as in the sire model. The
variance-covariance matrix (𝑣𝑎𝑟(𝑎)) between all animal effects is proportional
to the additive genetic relationship matrix 𝐴 among all animals. We will see in
a later chapter how to compute the matrix 𝐴.

2This is not the same as the genotypic value in a single locus model.
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