
Chapter 6

Variance and Inbreeding

Recalling from chapter 5 the variance (𝑣𝑎𝑟(𝑢𝑖)) of a breeding value 𝑢𝑖 of animal𝑖 is given by 𝑣𝑎𝑟(𝑢𝑖) = (1 + 𝐹𝑖)𝜎2𝑢 (6.1)

where 𝐹𝑖 is the inbreeding coefficient of animal 𝑖 and 𝜎2𝑢 corresponds to the
additive genetic variance. At first sight this seams difficult to understand why
the inbreeding coefficient increases the variance of a breeding value. This chapter
aims at explaining the relationship between inbreeding and the genetic variance.
The material presented here is based on chapters 3 and 14 of (Falconer and
Mackay, 1996).

6.1 Inbreeding

Inbreeding means mating related individuals. The degree of relationship be-
tween individuals in a population depends on the size of the population. In a
population of bisexual organisms every individual has 2𝑡 ancestors when look-
ing 𝑡 generations back. Already for small 𝑡 the number of required individuals
in a population becomes quite large in order to provide separate unrelated an-
cestors. As a consequence of that any pair of individuals must be related to
some degree. Furthermore, pairs mating at random are expected to be more
related in smaller populations compared to when individuals mate at random
in large populations. Therefore properties of small populations can be treated
as consequences of inbreeding.
An important consequence of two individuals having a common ancestor is that
they may both carry replicates of one of the alleles present in the common
ancestor. If the two individuals mate, they may pass on these replicates to their
offspring.
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76 CHAPTER 6. VARIANCE AND INBREEDING

6.1.1 Inbreeding in Idealized Population

The coefficient of inbreeding is deduced assuming an idealized population. Start-
ing with the base population and its progeny forming generation 1 the devel-
opment of the inbreeding coefficient is computed. What is meant by the term
idealized population is shown in Figure 6.1.
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Figure 6.1: Subdivision of a single large population into a number of subpopu-
lations or lines

The computation of the inbreeding coefficient may be visualized by the following
situation. Let us assume a hermaphrodite marine organism, capable of self-
fertilization shedding eggs and sperm into the sea. There are 𝑁 individuals,
each shedding equal numbers of gametes which mate at random. At a given
locus, all the alleles in the base population have to be regarded as non-identical.
For that single locus, among the gametes shed by the base population there
are 2𝑁 different sorts in equal number. What is the probability that a pair of
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gametes taken at random carry identical alleles? This probability corresponds
to the inbreeding coefficient (𝐹 ). Any gamete has a chance of 1/(2𝑁) to
mate with a gamete carrying the same allele. Hence the inbreeding coefficient
(𝐹1) in generation 1 corresponds to

𝐹1 = 12𝑁 (6.2)

In generation 2 there are two ways in which identical homozygotes can arise,
first from new replication of alleles and second from previous replications. The
probability of newly replicated alleles coming together in a new zygote is again1/(2𝑁). The remaining proportion 1 − (1/(2𝑁)) of zygotes carries alleles that
are not identical, but may have been identical from the previous generation.
The total probability of identical zygotes in generation 2 is

𝐹2 = 12𝑁 + (1 − 12𝑁 ) ∗ 𝐹1 (6.3)

The same argument leading to equation (6.3) applies to any subsequent gener-
ations. We can therefore write the more general statement

𝐹𝑡 = 12𝑁 + (1 − 12𝑁 ) ∗ 𝐹𝑡−1 (6.4)

Thus the inbreeding coefficient given in (6.4) consists of two parts: first an in-
crement (1/(2𝑁)) attributable to new inbreeding and a remainder that is caused
by inbreeding of previous generations. The increment (1/(2𝑁)) is assigned to a
new variable Δ𝐹 , so that

Δ𝐹 = 12𝑁 (6.5)

With that equation (6.4) can be re-written as𝐹𝑡 = Δ𝐹 + (1 − Δ𝐹) ∗ 𝐹𝑡−1 (6.6)

Solving (6.6) for Δ𝐹 results in

Δ𝐹 = 𝐹𝑡 − 𝐹𝑡−11 − 𝐹𝑡−1 (6.7)

The measure of the rate of inbreeding given in equation (6.7) provides a
convenient way of generalising the concept of inbreeding beyond the simplifi-
cations of the idealized population. This generalization provides a means of
comparing inbreeding effects of different breeding systems. When expressing
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inbreeding in terms of Δ𝐹 , equation (6.4) is valid for any breeding system and
is not restricted to the idealized population where Δ𝐹 is set to 1/(2𝑁). So far,
we have just related the inbreeding coefficient in one generation to the previous
generation. It remains to express the inbreeding coefficient in terms of a set of
properties of the base population. This is simplified by defining the symbol 𝑃
as the complement of the inbreeding coefficient 𝐹 , hence𝑃 = 1 − 𝐹 (6.8)

The quantity symbolized by 𝑃 is known as the panmicitic index. Using (6.8)
and inserting it into (6.7) leads to𝑃𝑡𝑃𝑡−1 = 1 − Δ𝐹 (6.9)

Hence the rate at which 𝑃 increases from one generation to the next is reduced
to a constant 1 − Δ𝐹 . Going back 𝑡 generations to the base population leads to𝑃𝑡 = (1 − Δ𝐹)𝑡 ∗ 𝑃0 (6.10)

In the base population, we assumed no inbreeding, hence 𝐹0 = 0 and 𝑃0 = 1.
Using the result of (6.10) to compute 𝐹𝑡 leads to𝐹𝑡 = 1 − (1 − Δ𝐹)𝑡 (6.11)

6.1.2 Variance of Gene Frequency

According the Hardy-Weinberg Equilibrium, gene frequencies are constant over
generations. But this is only true, if the base population is not divided into
subpopulations or lines. If the base population is split into separate lines as
shown in Figure 6.1, the gene frequencies in the single lines start to show vari-
ation. The amount of the variation is quantified by the variance of the gene
frequencies.

The variance (𝜎2Δ𝑞) of the change of gene frequency in one generation is first of
all the variance of a binomial random variable and can be expressed in terms of
the rate of inbreeding, as shown below.𝜎2Δ𝑞 = 𝑝0𝑞02𝑁 = 𝑝0𝑞0Δ𝐹 (6.12)

An equivalent way of writing (6.13) is in terms of the inbreeding coefficient (𝐹1)
and the variance (𝜎2𝑞) of gene frequencies after one generation. It follows that
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the relationship is the same after any number of generations, so that after 𝑡
generations 𝜎2𝑞 = 𝑝0𝑞0𝐹𝑡 (6.13)

6.1.3 Genotype Frequencies

The genotype frequencies in the population as a whole (across all generations)
can be deduced from the knowledge of the variance of gene frequencies. If an
allele has frequency 𝑞 in a given line, homozygotes of that allele have frequency𝑞2 in that line. The frequency of the homozygotes in the complete population
over all lines will be the mean value of 𝑞2 across all lines. The mean frequency of
homozygotes is written as ̄𝑞2. The value of ̄𝑞2 is obtained by the knowledge of the
variance of gene frequencies. In general the variance of a series of observations
is obtained by
From the general formula of obtaining the variance of a set of observations
corresponding to 𝜎2𝑞 = ( ̄𝑞2) − ̄𝑞2 (6.14)

the mean frequency of homozygotes ̄𝑞2 is obtained as̄𝑞2 = 𝜎2𝑞 + ̄𝑞2 (6.15)

where ̄𝑞 is the mean gene frequency which is the same as the original gene fre-
quency 𝑞0. Thus in the complete population, the frequency of the homozygotes
of a particular allele increases and is always in excess of the original frequency
by an amount equal to the variance of the gene frequency among the lines. In
a two-allele system, the same applies to the other allele. The genotypic fre-
quencies for a locus with two alleles can then be summarized as shown in Table
6.1.
The genotype frequencies shown in Table 6.1 are no longer in Hardy-Weinberg
equilibrium. This change in genotype frequencies is the result of a mechanism

Table 6.1: Genotype Frequencies in Population as a Whole

Genotype Frequency𝐴1𝐴1 𝑝20 + 𝜎2𝑞𝐴1𝐴2 2𝑝0𝑞0 − 2𝜎2𝑞𝐴2𝐴2 𝑞20 + 𝜎2𝑞
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which is called the dispersive process. The dispersive process is active as soon
as the idealized base population is subdivided into single lines. The increase
of the frequency of the homozygous genotypes is the source of a phenomenon
called inbreeding depression. This depression refers to the reduced fitness of
individuals in populations with increasing levels of inbreeding.

Combining the formulas (6.13) and (6.15) and furthermore dropping the sub-
script 𝑡 in 𝐹𝑡 leads to ̄𝑞2 = ̄𝑞02 + 𝜎2𝑞 = ̄𝑞02 + 𝑝0𝑞0𝐹 (6.16)

Based on (6.16) Table 6.1 with the genotype frequencies can be re-written as
shown in Table 6.2 where genotype frequencies are now expressed in terms of
the inbreeding coefficient 𝐹 .

6.2 Changes of Mean Value

So far, we have explained the consequences of inbreeding on the genotype fre-
quencies. In this section, we have a look at how inbreeding affects the mean
values of metric characters. The most important consequence of inbreeding is
the reduction of the mean phenotypic value of characters connected to repro-
duction and fitness. This phenomenon is known as inbreeding depression. In
saying that a certain trait shows inbreeding depression, we refer to the average
change of mean value in a number of lines. The separate lines are commonly
found to differ to a greater or lesser extent in the change they show, as in-
deed, we should expect in consequence of random drift of gene frequencies. The
change of mean value that we discuss now refers to changes of the mean value
of a number of lines derived from a common base population.

Consider a population, subdivided into a number of lines, with a coefficient
of inbreeding 𝐹 . Table 6.3 shows the genotype frequencies derived earlier, the
values of the single genotypes and the contribution to the population mean for
each genotype. The allele frequencies ̄𝑝 and ̄𝑞 correspond to the frequencies in
the whole population.

Table 6.2: Genotype Frequencies for a bi-allelic locus, expressed in terms of
inbreeding coefficient 𝐹

Genotype Original Frequencies Changes due to inbreeding𝐴1𝐴1 𝑝20 +𝑝0𝑞0𝐹𝐴1𝐴2 2𝑝0𝑞0 −2𝑝0𝑞0𝐹𝐴2𝐴2 𝑞20 +𝑝0𝑞0𝐹
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Table 6.3: Derivation of Inbreeding Depression

Genotype Frequency Value Product𝐴1𝐴1 ̄𝑝2 + ̄𝑝 ̄𝑞𝐹 𝑎 ( ̄𝑝2 + ̄𝑝 ̄𝑞𝐹 )𝑎𝐴1𝐴2 2 ̄𝑝 ̄𝑞 − 2 ̄𝑝 ̄𝑞𝐹 𝑑 (2 ̄𝑝 ̄𝑞 − 2 ̄𝑝 ̄𝑞𝐹 )𝑑𝐴2𝐴2 ̄𝑞2 + ̄𝑝 ̄𝑞𝐹 −𝑎 −( ̄𝑞2 + ̄𝑝 ̄𝑞𝐹 )𝑎
Summing over the last column in Table 6.3 results in the population mean for
the given trait.

𝑀𝐹 = ( ̄𝑝2 + ̄𝑝 ̄𝑞𝐹 )𝑎 + (2 ̄𝑝 ̄𝑞 − 2 ̄𝑝 ̄𝑞𝐹 )𝑑 − ( ̄𝑞2 + ̄𝑝 ̄𝑞𝐹 )𝑎= 𝑎( ̄𝑝 − ̄𝑞) + 2𝑑 ̄𝑝 ̄𝑞 − 2𝑑 ̄𝑝 ̄𝑞𝐹= 𝑎( ̄𝑝 − ̄𝑞) + 2𝑑 ̄𝑝 ̄𝑞(1 − 𝐹)= 𝑀0 − 2𝑑 ̄𝑝 ̄𝑞𝐹 (6.17)

where 𝑀0 is the population mean before inbreeding. The change of mean re-
sulting from inbreeding is 2𝑑 ̄𝑝 ̄𝑞𝐹 .

6.3 Changes of Variance

The effect of inbreeding on the genetic variance becomes apparent when again
imagining the change of gene frequencies in different lines that emerge from a
homogeneous base population. Within the different lines, the gene frequencies
change to the dispersive process of random drift. This makes that over time
some allele frequencies will tend towards 0 and frequencies of other alleles will
tend towards 1. This tendency towards the extremes is different in the different
lines. As a result in the populations, the similarity within lines increases, but
between the lines the differences get bigger.
The subdivision of a population into lines introduces an additional component
of variance, the between-line variance component. This means that the total ge-
netic variance is re-distributed into the within-line component and the between
line component.

6.3.1 Redistribution of Genetic Variance

For reasons of simplicity, we are currently just looking at genetic loci with
purely additive effects. That means the dominance term 𝑑 for such additive
loci is 0. Strictly speaking, the results shown here apply only to traits with no
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non-additive variance. But still, these results serve as a good approximation to
the effect of inbreeding on the genetic variance.
Consider first a single locus. When there is not dominance the genotypic vari-
ance in the base population is given by𝑉𝐺 = 𝑉𝐴 = 2𝑝0𝑞0𝑎2 (6.18)

The variance within one given line is 𝑉𝐺 = 2𝑝𝑞𝑎2, where 𝑝 and 𝑞 are the allele
frequencies in that given line. The mean genetic variance (𝑉 ̄𝐺) within the lines
is 𝑉 ̄𝐺 = 2( ̄𝑝𝑞)𝑎2 (6.19)

where ( ̄𝑝𝑞) is the mean value of 𝑝𝑞 over all lines. The term 2( ̄𝑝𝑞) is the overall
frequency of heterozygotes in the whole population, which, by Table 6.2, is equal
to 2𝑝0𝑞0(1 − 𝐹) where 𝐹 is the inbreeding coefficient. Therefore

𝑉 ̄𝐺 = 2( ̄𝑝𝑞)𝑎2= 2𝑝0𝑞0(1 − 𝐹)= 𝑉𝐺(1 − 𝐹) (6.20)

This remains true when summing the variances over all loci that affect a given
trait. The within-line variance corresponds to the original variance times (1−𝐹).
As 𝐹 approaches 1, the within-line variance tends toward 0.
Now consider the between-line variance. This is the variance of the true means
of lines, and would be estimated from an analysis of variance as the between-line
component. For a single locus with no dominance, the mean genotypic value of
a line with allele frequencies 𝑝 and 𝑞 is obtained as𝑀 = 𝑎(𝑝 − 𝑞) = 𝑎(1 − 2𝑞) (6.21)

Now we have to find the variance of 𝑀 . The term 𝑎 is a constant, meaning that
it is the same in all the lines. Hence the only random term in 𝑀 is the allele
frequency 𝑞. Therefore𝑣𝑎𝑟(𝑀) = 𝜎2𝑀 = 4𝑎2𝜎2𝑞 = 4𝑎2𝑝0𝑞0𝐹 (6.22)

Comparing the results of (6.22) and (6.20) shows that 𝜎2𝑀 = 2𝐹𝑉𝐺. Putting the
two components together leads to the total genetic variance as shown in Table
6.4.
From the last row of Table 6.4, we can see that the total additive genetic variance
in a population with inbreeding corresponds to (1+𝐹)𝑉𝐺 which is exactly what
we wanted to show at the beginning of this chapter in equation (6.1).
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Table 6.4: Partitioning of the gentic additive variance in a population with lines
and a given inbreeding coefficient F

Source Variance
Between lines 2𝐹𝑉𝐺
Within lines (1 − 𝐹)𝑉𝐺
Total (1 + 𝐹)𝑉𝐺
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