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Preface

Livestock Breeding and Genomics is a masters course taught in the Institute of
Agricultural Sciences at ETH Zurich. The aim of this course is to introduce the
basic concepts of livestock breeding and genomics to the students.

Prerequisites

There are no explicit prerequisites for this course. All required concepts are
explained during this course. Although basic knowledge in the following areas
is definitely helpful for this course.

• Linear Algebra: Basic properties of and basic operations with vectors
and matrices

• Statistics: Simple linear models and least squares
• R: Basics of how to work with data and how to do simple computations

Goals

The following goals are taken from the teaching system at ETH. The students
are able to set up design matrices, the additive genetic relationship matrix and
its inverse as well as the mixed model equations to estimate BLUP breeding
values. The concept of BLUP breeding values are also extended to genomic
selection. All concepts introduced during this course are not only presented
during the lecture, but students are expected to work with the concepts on
small example problems.

Specific Learning Goals

The students …

• … understand the basic concepts of livestock breeding and genomics.
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• … can separate the concepts of breeding and genomics from the techniques
that are important in a livestock production enterprise.

• … are familiar with the basic tools used in livestock breeding and genomics.
• … know for which problems these tools can be applied.
• … understand the genetic foundation behind the theory on which livestock

breeding and genomics is based on.
• … are able to extend the genetic theory into the statistical models used in

livestock breeding and genomics.
• … can extract the practical meaning of the results of the statistical anal-

yses.

Exam

There will be a written exam during the lecture of the last week of the semester.
The exam is going to be an open-book exam. All material that seams helpful
to students will be allowed. The students must solve the exams on their own.
The exam is not designed to be solved in teams.

Lecture Notes

These lecture notes contain all the relevant material for the exam. The appendix
of the course notes contains two chapters, which introduce the necessary tools
to work through the material of this course. Those tools consist of linear algebra
and R. These chapters are mostly left to students to work through by themselves.
Different students have different levels of skills in the topics of linear algebra
and R. Hence not every student needs to go through the presented material at
the same depth.



Chapter 1

Introduction

1.1 Terminology

The terms

• Livestock Breeding and
• Animal Breeding

are used interchangeably in this course. Although, the latter is a more general
term, whereas the former focuses on livestock species, i.e. animals which are
typically present on a farm such as cattle, pig, goat and sheep. Animal breeding
in general could also include pets such as dogs or cats or even zoo animals. But
the very interesting topic of breeding such species is outside of the scope of this
lecture and is therefore not covered in these course notes.

The term livestock breeding is sometimes understood ambiguously. In gen-
eral, most people do not differentiate between livestock breeding and animal
husbandry or animal production. From a scientific point of view a Livestock
Breeder is a person who owns a number of animals from which he or she se-
lects parent animals and uses a designed mating scheme to achieve a certain
goal with the offspring animals. Most commonly known are breeders of pet
animals such as dogs, cats or birds which follow individual breeding goals which
focus on specific phenotypic appearance or on special behavioral traits. Around
the end of the 19𝑡ℎ century, livestock breeders have realized that they have to
collaborate in breeding associations to be able to effectively select parent an-
imals from a large breeding population. This allowed them to achieve more
robust selection responses in shorter amounts of time, especially for livestock
species with long generation intervals such as cattle and horse. This develop-
ment is nicely documented by the archive of Swiss agricultural history available
at https://www.histoirerurale.ch/afaahr/. In summary, livestock breeders are

9
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10 CHAPTER 1. INTRODUCTION

primarily interested in selecting parent animals with the best genetic potential
to produce offspring animals that are closer to a breeding goal. From an eco-
nomic point of view the sale of breeding animals to other farmers makes an
important contribution to the economic result of the farm.

In contrast to livestock breeding, livestock production focuses on the aspects of
keeping animals on farms to produce goods that can be sold. Nowadays, the
goods produced by farm animals are mostly used in human nutrition. Due to the
focus on the production aspects, the economic result of the production process
is determined by the difference between monetary revenue for the products and
the costs that are caused by the production of the goods.

Depending on the livestock species, the separation between breeding and pro-
duction is more pronounced. In pigs, most farms are specialized into either
breeding farms or production farms. Most cattle farms run as mixed operations
which means that they are members of breeding organizations but they also run
a production business. While the mixture of both operation types (breeding and
production) on the same farm is not negative, it is conceptually important to
separate breeding and production.

1.2 History

Livestock breeding and Genomics are two scientific areas which have experienced
quite dramatic changes in the last few years. As already mentioned in the
previous section, livestock breeding started over 100 years ago and is a much
older discipline than Genomics.

1.2.1 Livestock Breeding

In principle, livestock breeding did exist for a very long time in a rather un-
systematic form. Individual breeders always made choices about which animals
they want to select as parents for the next generation of their livestock herds.
Accounts that such early activities in livestock breeding happened as early as
the Middle Ages are given in (Duerst, 1931) and (Arndorfer et al., 2010). But
to the best of my knowledge it was only in the second half of the 20th century
that the area of livestock breeding made some ground-breaking progress which
spread all over the world. This progress was initiated by the researcher Charles
R. Henderson. He and his team developed a solid methodology that is still
applied up to the current day. The main achievement of Henderson and his
team was to find a class of statistical models that are consistent with the theory
of quantitative genetics described in (Falconer and Mackay, 1996) which is one
reference among many other sources. Furthermore, the research groups lead by
Henderson showed how to efficiently compute the results form the statistical
models for large datasets.

https://en.wikipedia.org/wiki/Charles_Roy_Henderson
https://en.wikipedia.org/wiki/Charles_Roy_Henderson
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1.2.2 Genomics

Genomics started with the Human Genome Project. The publication of the first
draft of the complete Human genome (Venter et al., 2001) and a publication by
(Meuwissen et al., 2001a) that appeared in the same year made it possible to
include information of complete genomes into statistical analyses. The process
of including information from complete genomes into statistical analyses is what
is understood by the term genomics.
The introduction of genomics methodologies in the area of livestock breeding
caused a shift of paradigm. In large livestock breeding populations associations
between certain genetic variants and the expression of desirable forms of phe-
notypic traits can be estimated using older breeding animals. The obtained
estimation results can be used to assess the genetic potential of young animals
which do not have any phenotypic observations available. This type of analysis
is part of a procedure which is termed genomic selection and it allows for se-
lecting breeding animals at a much younger age which shortens the generation
interval.
The basic principle of how animals are selected as parents of future genera-
tions did not change, but the availability of different types of information and
the amount of information that can be used to assess the genetic potential
of a selection candidate changed dramatically since the invention of genomic
technologies. Despite these rapid developments of new technologies, livestock
breeders are still facing the following two fundamental questions.

1.3 Fundamental Questions

In livestock breeding and genomics, we are interested in addressing two funda-
mental questions that bothered breeders for a very long time. For this course,
we put these two fundamental questions into the following form.

1. What is the best animal?
2. What can breeders do to obtain the best animal?

The term best is relative, because there is no best animal for all situations and
all environments. Animals that show high performances in one environment,
may not be able to produce as much in a different environment. One exam-
ple for that might be Holstein cows in Europe or North America are able to
produce a lot of milk, but they have difficulties to survive in Africa. Knowing
that the environment plays an important role for livestock animals, we will be
assuming that the animals that we are selecting, are more or less adapted to
their environment.
Animals are usually described or characterized in terms of appearance or per-
formance or a combination of both. In any case, we will be talking about traits

https://en.wikipedia.org/wiki/Human_Genome_Project


12 CHAPTER 1. INTRODUCTION

where any trait is an observable or measurable characteristic of an animal. Ex-
amples of observable traits are

• coat color
• size
• muscling
• leg set
• udder conformation and many more.

Observable traits are mostly used to describe the appearance of an animal. In
contrast to that, measurable traits are mostly used to describe the performance
of an animal. Examples of measurable traits are

• body weight
• milk production
• protein and fat yield.

Note, it is important to distinguish between the observed or measured values of
a trait which might be red coat color or 343 kg of body weight and the traits
themselves which are just coat color or body weight. The observed or measured
values of a trait are also called phenotypes.

1.3.1 Genotypes and Phenotypes

In livestock breeding we are mainly concerned with changing animal populations
at the genetic level. The reason why we are interested in changing a population
genetically is because parents do not pass their phenotypes to their offspring.
Parents pass a random sample of their genes to their offspring. For each offspring
every parent does transmit a different sample of their genes. From a genetic
point of view, we want to know not only the most desirable phenotype, but
also the most desirable genotypes. From the central dogma of molecular bi-
ology (https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology),
it follows that an animal’s genotype provides the genetic background of phe-
notypes. The relationship between phenotypes (𝑃 ) and genotypes (𝐺) can be
summarized by the following equation (1.1)

𝑃 = 𝐺 + 𝐸 (1.1)

where 𝐸 represents the environmental effects. Because we want to change
our populations at a genetic level, we are interested in the effect (𝐺) of every
genotype. In most cases, we are not able to directly observe or measure 𝐺.
But we will see later on how we can estimate 𝐺 based on measurements and
observations of 𝑃 and based on estimates of 𝐸. The estimates of 𝐺 will later

https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology
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be called breeding values and those estimates will be used by breeders as
information for their tools to improve animal populations. Those tools are
being described in the following section.

1.4 Improvement of Animal Populations

The purpose of livestock breeding is to improve animal populations. Once an
animal is conceived, the genotype is fixed1 and cannot be improved anymore.
Breeders can improve populations at the genetic level using the following two
tools

1. selection
2. mating

1.4.1 Selection

Selection is the process to determine which individuals of a current population
become parents of the next generation. The application of selection in a certain
population over a certain time changes the animals in that population at the
genetic level. The most familiar form of selection is natural selection which
occurs in natural and wildlife populations. Natural selection is one of the great
forces of evolution and it also affects domestic animals. All animals with lethal
genetic defects are naturally selected against, i.e., they never become parents.

Although natural selection cannot be ignored for livestock species, what is most
important for animal breeders is artificial selection. The idea behind artificial
selection is simple. For a given trait all animals in a population are ranked
according to their breeding value. From this list the animals ranking top are
used as parents for the next generation. In most livestock populations, animal
breeders are interested to improve their animals with respect to more than just
one trait. When considering more than one trait, the question is how to come up
with the ranking for the animals that are selected as potential parents. Several
strategies to produce such a ranking based on a number of traits. It has been
shown that using a weighted mean of the breeding values of all traits which is
called aggregate genotype to rank all animals is an optimal procedure to be
used as selection criterion (Hazel, 1943).

1.4.2 Mating

The second tool we have available as animal breeders is mating. In a mating
scheme, we decide which of the selected male animals are bred to which selected

1Here we do not take into account new technologies such as gene editing.
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female animals. There are a number of different rules that can be followed. The
application of a given set of rules are summarized as mating system. There are
three reasons for using a mating system.

1. producing offspring with extreme breeding values. When parents with
extreme breeding values (high or low) are mated, offspring with extreme
phenotypes can be expected. This is mostly used when a given trait is to
be changed in one direction

2. make use of complementarity in parental traits. When neither of the
parents is optimal, a mix of traits can be desirable. In such a case parental
genotypes can be quite different. When parents of different breeds are
mated, then this is called crossbreeding.

3. obtain positive effects due to heterosis. Hybrid vigor or heterosis in cross-
breeding occurs when offspring performance exceeds the performance of
the pure-breds.

There might also be other aspects that influence a mating system, e.g. to re-
strict the level of inbreeding or to consider optimum genetic contribution theory
(Meuwissen and Sonesson, 1997).

1.5 Statistics

Several authors such as (Schaeffer, 2013) and (Gianola and Rosa, 2015) have
reviewed the development of statistical methods in the area of animal breeding.
Both authors mention that statistical methodology plays an important role in
animal breeding. Most animal breeders are concerned with estimating or pre-
dicting breeding values. This is still done using a set of methods resulted from
the theory developed by Charles Henderson and his team ((Henderson, 1953)
and (Henderson, 1975)). These methods are known under the name of BLUP.
BLUP shows some important regularization properties. These properties allow
us to estimate or to predict many more unknown parameters than we have ob-
servations. In animal breeding, breeding values of all animals in a population
can be predicted also for those animals for which we do not have observations.
This is particularly important for traits which can only be observed in animals
of one sex.

There are more methods with regularization properties. The so-called Bayesian
methods are one example. Bayesian methods use the so-called Bayes theo-
rem ((Bayes and Price, 1763) and https://en.wikipedia.org/wiki/Bayes%27_
theorem) to come up with parameter estimates. Although Bayesian methods
are much older than other methods such as BLUP, they were only introduced
into practical animals breeding in the early 1990’s. Important pioneering papers
for the use of Bayesian methods in animal breeding are (Gianola and Foulley,
1982) and (Gianola and Fernando, 1986). The reasons for the late adoption

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem
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of Bayesian methods are certainly related to development of cheap computing
infrastructure. This is described in more detail in subsection 1.6.

1.6 Computer Science

The development of computing power is often summarized by the so-called
Moore’s Law ((Moore, 1965) and https://en.wikipedia.org/wiki/Moore%27s_
law). Moore’s law is not a law in the sense of mathematics or physics, but it
is a prediction that Gordon Moore2 made as early as 1965. He predicted that
the number of components that could be placed on a certain integrated circuit
would double roughly every 18 months between 1959 and 1975. This prediction
was generalized into a statement that the general computing performance could
be doubled every 18 months. In retro-spect this was more or less true for the
last 50 years. This considerable increase in computing performance had also a
dramatic impact in the costs of a certain computation.

When comparing the development of computing performance with the perfor-
mance of livestock animals, there is an obvious relation between the two. This
means the performance increase of livestock animals was in part facilitated by
the development of cheap computing power. The two figures 1.1 and 1.2 com-
pare the two developments. The first diagram shows the annual milk production
per cow.

The Figure 1.2 below shows the development of computing power according to
Moore’s law.

2One of the co-founders and a director of Intel

https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Moore%27s_law
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Milk Performance per Cow 
(Source: https://hoards.com/article-20808-what-will-dairy-cows-and-
farms-look-like-in-50-years.html)

Figure 1.1: Yearly Milk Yield per Cow in the USA



1.6. COMPUTER SCIENCE 17

Source: https://en.wikipedia.org/wiki/Moore%27s_law

Figure 1.2: Computing Performance According To Moore’s Law
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Chapter 2

Basics in Quantitative
Genetics

As already mentioned in section 1.3.1, the central dogma of molecular biology
tells us that the genotype is the basics of any phenotypic expression. The
genotype of an individual is composed of a number of genes which are also called
loci. In this section, we start with the simplest possible genetic architecture
where the genotype is composed by just one locus. The connection between
the genotype and the phenotype is modeled according to equation (1.1). The
phenotype is assumed to be a quantitative trait. That means we are not looking
at binary or categorical traits. Categorical traits can just take a limited number
of different levels. Examples of categorical traits are the horn status in cattle or
certain color characteristics. Quantitative traits do not take discrete levels but
they show specific distributions.

2.1 Single Locus - Quantitative Trait

In Livestock there are not many examples where a quantitative trait is influenced
by just one locus. But this case helps in understanding the foundation of more
complex genetic architectures. We start by looking at the following idealized
population (Figure 2.1).

2.1.1 Terminology

The different genetic variants that are present at our Locus 𝐺 are called alleles.
When looking at all individuals in the population for our locus, we have two
different alleles 𝐺1 and 𝐺2. Hence, we call the locus 𝐺 to be a bi-allelic locus.
In any given individual of the population, the two alleles of the locus 𝐺 together

19
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Population (N = 10)

G1

G1

G1

G2

G2

G2

G2

G2

G2 G2

G2

G2

G1

G1

G1

G1

G1 G1

G1

G1

Figure 2.1: Idealized Population With A Single Locus

are called the individuals genotype. All possible combinations of the two alleles
at the locus 𝐺 leads to a total number of three genotypes. It is important to
mention that the order of the alleles in a given genotype is not important. Hence,
𝐺1𝐺2 and 𝐺2𝐺1 are the same genotype. The two genotypes 𝐺1𝐺1 and 𝐺2𝐺2
are called homozygous and the genotype 𝐺1𝐺2 is called heterozygous.

2.2 Frequencies

To be able to characterize our population with respect to the locus of interest, we
are first looking at some frequencies. These are measures of how often a certain
allele or genotype does occur in our population. For our example population
shown in Figure 2.1, the genotype frequencies are
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𝑓(𝐺1𝐺1) = 4
10 = 0.4

𝑓(𝐺1𝐺2) = 3
10 = 0.3

𝑓(𝐺2𝐺2) = 3
10 = 0.3 (2.1)

The allele frequencies can be determined either by counting or they can be
computed from the genotype frequencies.

𝑓(𝐺1) = 𝑓(𝐺1𝐺1) + 1
2 ∗ 𝑓(𝐺1𝐺2) = 0.55

𝑓(𝐺2) = 𝑓(𝐺2𝐺2) + 1
2 ∗ 𝑓(𝐺1𝐺2) = 0.45 (2.2)

2.3 Hardy-Weinberg Equilibrium

The Hardy-Weinberg equilibrium is the central law of how allele frequencies
and genotype frequencies are related in an idealized population. Given the
allele frequencies

𝑓(𝐺1) = 𝑝
𝑓(𝐺2) = 𝑞 = 1 − 𝑝 (2.3)

During mating, we assume that in an idealized population alleles are combined
independently. This leads to the genotype frequencies shown in Table 2.1.
Summing up the heterozygous frequencies leads to

𝑓(𝐺1𝐺1) = 𝑝2

𝑓(𝐺1𝐺2) = 2𝑝𝑞
𝑓(𝐺2𝐺2) = 𝑞2 (2.4)

Table 2.1: Genotype Frequencies under Hardy-Weinberg equilibrium

Alleles 𝐺1 𝐺2

𝐺1 𝑓(𝐺1𝐺1) = 𝑝2 𝑓(𝐺1𝐺2) = 𝑝 ∗ 𝑞
𝐺2 𝑓(𝐺1𝐺2) = 𝑝 ∗ 𝑞 𝑓(𝐺2𝐺2) = 𝑞2
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Comparing these expected genotype frequencies in a idealized population under
the Hardy-Weinberg equilibrium to what we found for the small example pop-
ulation in Figure 2.1, we can clearly say that the small example population is
not in Hardy-Weinberg equilibrium.

2.4 Value and Mean

Our goal is still to improve our population at the genetic level. The term im-
provement implies the need for a quantitative assessment of our trait of interest.
Furthermore, we have to be able to associate the genotypes in the population
to the quantitative values of our trait.

2.4.1 Genotypic Values

The values 𝑉𝑖𝑗 to each genotype 𝐺𝑖𝐺𝑗 are assigned as shown in Figure 2.2.

G2G2 G1G10 G1G2

aa

d

Figure 2.2: Genotypic Values

The origin of the genotypic values is placed in the middle between the two
homozygous genotypes 𝐺2𝐺2 and 𝐺1𝐺1. Here we are assuming that 𝐺1 is the
favorable allele. This leads to values of +𝑎 for genotype 𝐺1𝐺1 and of −𝑎 for
genotype 𝐺2𝐺2. The value of genotype 𝐺1𝐺2 is set to 𝑑 and is called dominance
deviation. Table 2.2 summarizes the values for all genotypes.
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Table 2.2: Values for all Genotypes

Variable Genotype Values
𝑉11 𝐺1𝐺1 a
𝑉12 𝐺1𝐺2 d
𝑉22 𝐺2𝐺2 -a

2.4.2 Population Mean

For the complete population, we can compute the population mean (𝜇) of
all values at the locus 𝐺. This mean corresponds to the expected value and is
computed as

𝜇 = 𝑉11 ∗ 𝑓(𝐺1𝐺1) + 𝑉12 ∗ 𝑓(𝐺1𝐺2) + 𝑉22 ∗ 𝑓(𝐺2𝐺2)
= 𝑎 ∗ 𝑝2 + 𝑑 ∗ 2𝑝𝑞 + (−𝑎) ∗ 𝑞2

= (𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑 (2.5)

The population mean depends on the values 𝑎 and 𝑑 and on the allele frequencies
𝑝 and 𝑞. The larger the difference between 𝑝 and 𝑞 the more influence the value
𝑎 has in 𝜇, because for very different 𝑝 and 𝑞 the product 2𝑝𝑞 is very small.
On the other hand, if 𝑝 = 𝑞 = 0.5, then 𝜇 = 0.5𝑑. For loci with 𝑑 = 0, the
population mean 𝜇 = (𝑝 − 𝑞)𝑎 and hence, if in addition we have 𝑝 = 𝑞, then
𝜇 = 0.

2.4.3 Breeding Values

The term breeding value is defined as shown in Definition ??.

Applying this definition and using the parameters that we have computed so
far leads to the following formulas for the breeding value of an animal with a
certain genotype.

2.4.3.1 Breeding value for 𝐺1𝐺1

Assume that we have a given parent 𝑆 with a genotype 𝐺1𝐺1 and we want to
compute its breeding value. Let us further suppose that our single parent 𝑆 is
mated to a potentially infinite number of animals from the idealized population,
then we can deduce the following mean genotypic value for the offspring of parent
𝑆.



24 CHAPTER 2. BASICS IN QUANTITATIVE GENETICS

Mates of 𝑆
𝑓(𝐺1) = 𝑝 𝑓(𝐺2) = 𝑞

Parent 𝑆
𝑓(𝐺1) = 1 𝑓(𝐺1𝐺1) = 𝑝 𝑓(𝐺1𝐺2) = 𝑞

Because parent 𝑆 has genotype 𝐺1𝐺1, the frequency 𝑓(𝐺1) of a 𝐺1 allele coming
from 𝑆 is 1 and the frequency 𝑓(𝐺2) of a 𝐺2 allele is 0. The expected genetic
value (𝜇11) of the offspring of animal 𝑆 can be computed as

𝜇11 = 𝑝 ∗ 𝑎 + 𝑞 ∗ 𝑑 (2.6)

Applying definition ??, we can compute the breeding value (𝐵𝑉11) for animal 𝑆
as shown in equation (2.7) while using the results given by equations (2.6) and
(2.5).

𝐵𝑉11 = 2 ∗ (𝜇11 − 𝜇)
= 2 (𝑝𝑎 + 𝑞𝑑 − [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑])
= 2 (𝑝𝑎 + 𝑞𝑑 − (𝑝 − 𝑞)𝑎 − 2𝑝𝑞𝑑)
= 2 (𝑞𝑑 + 𝑞𝑎 − 2𝑝𝑞𝑑)
= 2 (𝑞𝑎 + 𝑞𝑑(1 − 2𝑝))
= 2𝑞 (𝑎 + 𝑑(1 − 2𝑝))
= 2𝑞 (𝑎 + (𝑞 − 𝑝)𝑑) (2.7)

Breeding values for parents with genotypes 𝐺2𝐺2 and 𝐺1𝐺2 are derived analo-
gously.

2.4.3.2 Breeding value for 𝐺2𝐺2

First, we determine the expected genotypic value for offsprings of a parent 𝑆
with genotype 𝐺2𝐺2

Mates of parent 𝑆
𝑓(𝐺1) = 𝑝 𝑓(𝐺2) = 𝑞

Parent 𝑆
𝑓(𝐺2) = 1 𝑓(𝐺1𝐺2) = 𝑝 𝑓(𝐺2𝐺2) = 𝑞
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The expected genetic value (𝜇22) of the offspring of animal 𝑆 can be computed
as

𝜇22 = 𝑝𝑑 − 𝑞𝑎 (2.8)

The breeding value 𝐵𝑉22 corresponds to

𝐵𝑉22 = 2 ∗ (𝜇22 − 𝜇)
= 2 (𝑝𝑑 − 𝑞𝑎 − [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑])
= 2 (𝑝𝑑 − 𝑞𝑎 − (𝑝 − 𝑞)𝑎 − 2𝑝𝑞𝑑)
= 2 (𝑝𝑑 − 𝑝𝑎 − 2𝑝𝑞𝑑)
= 2 (−𝑝𝑎 + 𝑝(1 − 2𝑞)𝑑)
= −2𝑝 (𝑎 + (𝑞 − 𝑝)𝑑) (2.9)

2.4.3.3 Breeding value for 𝐺1𝐺2

The genotype frequencies of the offsprings of a parent 𝑆 with a genotype 𝐺1𝐺2
is determined in the following table.

Mates of parent 𝑆
𝑓(𝐺1) = 𝑝 𝑓(𝐺2) = 𝑞

Parent 𝑆
𝑓(𝐺1) = 0.5 𝑓(𝐺1𝐺1) = 0.5𝑝 𝑓(𝐺1𝐺2) = 0.5𝑞
𝑓(𝐺2) = 0.5 𝑓(𝐺1𝐺2) = 0.5𝑝 𝑓(𝐺2𝐺2) = 0.5𝑞

The expected mean genotypic value of the offsprings of parent 𝑆 with genotype
𝐺1𝐺2 is computed as

𝜇12 = 0.5𝑝𝑎 + 0.5𝑑 − 0.5𝑞𝑎 = 0.5 [(𝑝 − 𝑞)𝑎 + 𝑑] (2.10)

The breeding value 𝐵𝑉12 corresponds to
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𝑍𝑊12 = 2 ∗ (𝜇12 − 𝜇)
= 2 (0.5(𝑝 − 𝑞)𝑎 + 0.5𝑑 − [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑])
= 2 (0.5𝑝𝑎 − 0.5𝑞𝑎 + 0.5𝑑 − 𝑝𝑎 + 𝑞𝑎 − 2𝑝𝑞𝑑)
= 2 (0.5(𝑞 − 𝑝)𝑎 + (0.5 − 2𝑝𝑞)𝑑)
= (𝑞 − 𝑝)𝑎 + (1 − 4𝑝𝑞)𝑑
= (𝑞 − 𝑝)𝑎 + (𝑝2 + 2𝑝𝑞 + 𝑞2 − 4𝑝𝑞)𝑑
= (𝑞 − 𝑝)𝑎 + (𝑝2 − 2𝑝𝑞 + 𝑞2)𝑑
= (𝑞 − 𝑝)𝑎 + (𝑞 − 𝑝)2𝑑
= (𝑞 − 𝑝) [𝑎 + (𝑞 − 𝑝)𝑑] (2.11)

2.4.3.4 Summary of Breeding Values

The term 𝑎+(𝑞 −𝑝)𝑑 appears in all three breeding values. We replace this term
by 𝛼 and summarize the results in the following table.

Genotype Breeding Value
𝐺1𝐺1 2𝑞𝛼
𝐺1𝐺2 (𝑞 − 𝑝)𝛼
𝐺2𝐺2 −2𝑝𝛼

2.4.4 Allele Substitution

Comparing the genotype 𝐺2𝐺2 with the genotype 𝐺1𝐺2, one of the differences
is in the number of 𝐺1-alleles. 𝐺2𝐺2 has zero 𝐺1-alleles and 𝐺1𝐺2 has one
𝐺1-allele.

Let us imagine that we take animal 𝑖 with a 𝐺2𝐺2 genotype and use the
CRISPR-CAS genome editing technology to replace one of the 𝐺2 alleles in
animal 𝑖 by a 𝐺1 allele (see Figure 2.3). After applying the gene editing proce-
dure to animal 𝑖 at locus 𝐺, animal 𝑖 would have genotype 𝐺1𝐺2.

Due to the application of genome editing at locus 𝐺 of animal 𝑖 the breeding
value changed. Before the genome editing procedure it was 𝐵𝑉22 and after
genome editing the breeding value of animal 𝑖 corresponds to 𝐵𝑉12. So the
effect of replacing a 𝐺2 allele by a 𝐺1 allele on the breeding value corresponds
to the difference 𝐵𝑉12 − 𝐵𝑉22. The computation of this difference between the
breeding value 𝐵𝑉12 and 𝐵22 results in
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Figure 2.3: Schematic Depiction of Genome Editing on Animal i

𝐵𝑉 12 − 𝐵𝑉22 = (𝑞 − 𝑝)𝛼 − (−2𝑝𝛼)
= (𝑞 − 𝑝)𝛼 + 2𝑝𝛼
= (𝑞 − 𝑝 + 2𝑝)𝛼
= (𝑞 + 𝑝)𝛼
= 𝛼 (2.12)

The analogous computation can be done by comparing the breeding values 𝐵𝑉11
and 𝐵𝑉12.

𝐵𝑉11 − 𝐵𝑉12 = 2𝑞𝛼 − (𝑞 − 𝑝)𝛼
= (2𝑞 − (𝑞 − 𝑝)) 𝛼
= 𝛼 (2.13)

Because the differences between breeding values computed in (2.12) and (2.13)
are equal, we can conclude that the breeding values show a linear dependence
on the number of 𝐺1 alleles. This is the reason why the breeding values are
also called additive effects, because adding a further 𝐺1 allele instead of a 𝐺2
allel has always the same effect on the breeding values, namely just adding the
constant allele substitution effect 𝛼.
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2.4.5 Dominance Deviation

When looking at the difference between the genotypic value 𝑉𝑖𝑗 and the breeding
value 𝐵𝑉𝑖𝑗 for each of the three genotypes, we get the following results.

𝑉11 − 𝐵𝑉11 = 𝑎 − 2𝑞𝛼
= 𝑎 − 2𝑞 [𝑎 + (𝑞 − 𝑝)𝑑]
= 𝑎 − 2𝑞𝑎 − 2𝑞(𝑞 − 𝑝)𝑑
= 𝑎(1 − 2𝑞) − 2𝑞2𝑑 + 2𝑝𝑞𝑑
= [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑] − 2𝑞2𝑑
= 𝜇 + 𝐷11 (2.14)

𝑉12 − 𝐵𝑉 12 = 𝑑 − (𝑞 − 𝑝)𝛼
= 𝑑 − (𝑞 − 𝑝) [𝑎 + (𝑞 − 𝑝)𝑑]
= [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑] + 2𝑝𝑞𝑑
= 𝜇 + 𝐷12 (2.15)

𝑉22 − 𝐵𝑉22 = −𝑎 − (−2𝑝𝛼)
= −𝑎 + 2𝑝 [𝑎 + (𝑞 − 𝑝)𝑑]
= [(𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑] − 2𝑝2𝑑
= 𝜇 + 𝐷22

The difference all contain the population mean 𝜇 plus a certain deviation. This
deviation term is called dominance deviation.

2.4.6 Summary of Values

The following table summarizes all genotypic values all breeding values and the
dominance deviations.

Genotyp genotypic value Breeding Value Dominance Deviation
𝐺𝑖𝐺𝑗 𝑉𝑖𝑗 𝐵𝑉𝑖𝑗 𝐷𝑖𝑗
𝐺1𝐺1 𝑎 2𝑞𝛼 −2𝑞2𝑑
𝐺1𝐺2 𝑑 (𝑞 − 𝑝)𝛼 2𝑝𝑞𝑑
𝐺2𝐺2 −𝑎 −2𝑝𝛼 −2𝑝2𝑑
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The formulas in the above shown table assume that 𝐺1 is the favorable allele
with frequency 𝑓(𝐺1) = 𝑝. The allele frequency of 𝐺2 is 𝑓(𝐺2) = 𝑞. Since we
have a bi-allelic locus 𝑝 + 𝑞 = 1.

Based on the definition of dominance deviation, the genotypic values 𝑉𝑖𝑗 can be
decomposed into the components population mean (𝜇), breeding value (𝐵𝑉𝑖𝑗)
and dominance deviation (𝐷𝑖𝑗) according to equation (2.16).

𝑉𝑖𝑗 = 𝜇 + 𝐵𝑉𝑖𝑗 + 𝐷𝑖𝑗 (2.16)

Taking expected values on both sides of equation (2.16) and knowing that the
population mean 𝜇 was defined as the expected value of the genotypic values in
the population, i.e. 𝐸 [𝑉 ] = 𝜇, it follows that the expected values of both the
breeding values and the dominance deviations must be 0. More formally, we
have

𝐸 [𝑉 ] = 𝐸 [𝜇 + 𝐵𝑉 + 𝐷]
= 𝐸 [𝜇] + 𝐸 [𝐵𝑉 ] + 𝐸 [𝐷]
= 𝜇 (2.17)

From the last line in equation (2.17), it follows that 𝐸 [𝐵𝑉 ] = 𝐸 [𝐷] = 0. This
also shows that both breeding values and dominance deviations are defined as
deviation from a given mean.

2.5 Variances

The population mean 𝜇 and derived from that the breeding values were defined
as expected values. Their main purpose is to assess the state of a given pop-
ulation with respect to a certain genetic locus and its effect on a phenotypic
trait of interest. One of our primary goals in livestock breeding is to improve
the populations at the genetic level through the means of selection and mat-
ing. Selection of potential parents that produce offspring that are closer to our
breeding goals is only possible, if the selection candidates show a certain level
of variation in the traits that we are interested in. In populations where there
is no variation which means that all individuals are exactly at the same level, it
is not possible to select potential parents for the next generation.

In statistics the measure that is most often used to assess variation in a certain
population is called variance. For any given discrete random variable 𝑋 the
variance is defined as the second central moment of 𝑋 which is computed as
shown in equation (2.18).



30 CHAPTER 2. BASICS IN QUANTITATIVE GENETICS

𝑉 𝑎𝑟 [𝑋] = ∑
𝑥𝑖∈𝒳

(𝑥𝑖 − 𝜇𝑋)2 ∗ 𝑓(𝑥𝑖) (2.18)

where 𝒳: set of all possible 𝑥-values
𝑓(𝑥𝑖) probability that 𝑥 assumes the value of

𝑥𝑖
𝜇𝑋 expected value 𝐸 [𝑋] of 𝑋

In this section we will be focusing on separating the obtained variances into dif-
ferent components according to their causative sources. Applying the definition
of variance given in equation (2.18) to the genotypic values 𝑉𝑖𝑗, we obtain the
following expression.

𝜎2
𝐺 = 𝑉 𝑎𝑟 [𝑉 ] = (𝑉11 − 𝜇)2 ∗ 𝑓(𝐺1𝐺1)

+ (𝑉12 − 𝜇)2 ∗ 𝑓(𝐺1𝐺2)
+ (𝑉22 − 𝜇)2 ∗ 𝑓(𝐺2𝐺2) (2.19)

where 𝜇 = (𝑝 − 𝑞)𝑎 + 2𝑝𝑞𝑑 the population mean.

Based on the decomposition of the genotypic value 𝑉𝑖𝑗 given in (2.16), the
difference between 𝑉𝑖𝑗 and 𝜇 can be written as the sum of the breeding value
and the dominance deviation. Then 𝜎2

𝐺 can be written as

𝜎2
𝐺 = 𝑉 𝑎𝑟 [𝑉 ] = (𝐵𝑉11 + 𝐷11)2 ∗ 𝑓(𝐺1𝐺1)

+ (𝐵𝑉12 + 𝐷12)2 ∗ 𝑓(𝐺1𝐺2)
+ (𝐵𝑉22 + 𝐷22)2 ∗ 𝑓(𝐺2𝐺2) (2.20)

Inserting the expressions for the breeding values 𝐵𝑉𝑖𝑗 and for the dominance
deviation 𝐷𝑖𝑗 found earlier and simplifying the equation leads to the result in
(2.21). A more detailed derivation of 𝜎2

𝐺 is given in the appendix (2.8) of this
chapter.

𝜎2
𝐺 = 2𝑝𝑞𝛼2 + (2𝑝𝑞𝑑)2

= 𝜎2
𝐴 + 𝜎2

𝐷 (2.21)

The formula in equation (2.21) shows that 𝜎2
𝐺 consists of two components. The

first component 𝜎2
𝐴 is called the genetic additive variance and the second

component 𝜎2
𝐷 is termed dominance variance. As shown in equation (2.27)

𝜎2
𝐴 corresponds to the variance of the breeding values. Because we have already
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seen that the breeding values are additive in the number of favorable alleles,
𝜎2

𝐴 is called genetic additive variance. Because 𝜎2
𝐷 corresponds to the variance

of the dominance deviation effects (see equation (2.29)) it is called dominance
variance.

2.6 Extension To More Loci

When only a single locus is considered, the genotypic values (𝑉𝑖𝑗) can be de-
composed according to equation (2.16) into population mean, breeding value
and dominance deviation. When a genotype refers to more than one locus, the
genotypic value may contain an additional deviation caused by non-additive
combination effects.

2.6.1 Epistatic Interaction

Let 𝑉𝐴 be the genotypic value of locus 𝐴 and 𝑉𝐵 denote the genotypic value of
a second locus 𝐵, then the total genotypic value 𝑉 attributed to both loci 𝐴
and 𝐵 can be written as

𝑉 = 𝑉𝐴 + 𝑉𝐵 + 𝐼𝐴𝐵 (2.22)

where 𝐼𝐴𝐵 is the deviation from additive combination of these genotypic values.
When computing the population mean earlier in this chapter, we assumed that
𝐼 was zero for all combinations of genotypes. If 𝐼 is not zero for any combination
of genes at different loci, those genes are said to interact with each other or to
exhibit epistasis. The deviation 𝐼 is called interaction deviation or epistatic
deviation. If 𝐼 is zero, the genes are called to act additively between loci. Hence
additive action may mean different things. When referring to one locus, it
means absence of dominance. When referring to different loci, it means absence
of epistasis.
Interaction between loci may occur between pairs or between higher numbers of
different loci. The complex nature of higher order interactions, i.e., interactions
between higher number of loci does not need to concern us. Because in the total
genotypic value 𝑉 , interaction deviations of all sorts are treated together in an
overall interaction deviation 𝐼 .
Applying the decomposition of the genotypic values 𝑉𝐴 of locus 𝐴 and 𝑉𝐵 of
locus 𝐵 as shown in (2.16) leads to

𝑉 = 𝑉𝐴 + 𝑉𝐵 + 𝐼𝐴𝐵
= 𝜇𝐴 + 𝐵𝑉𝐴 + 𝐷𝐴 + 𝜇𝐵 + 𝐵𝑉𝐵 + 𝐷𝐵 + 𝐼𝐴𝐵 (2.23)
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Collecting terms in (2.23) as follows

𝜇 = 𝜇𝐴 + 𝜇𝐵
𝑈 = 𝐵𝑉𝐴 + 𝐵𝑉𝐵
𝐷 = 𝐷𝐴 + 𝐷𝐵
𝐼 = 𝐼𝐴𝐵 (2.24)

The decomposition shown in (2.23) and the collection of variables (see (2.24))
can be generalized to more than two loci. This leads to the following generalized
form of decomposing the overall total genotype 𝑉 for the case of multiple loci
affecting a certain trait of interest.

𝑉 = 𝜇 + 𝑈 + 𝐷 + 𝐼 (2.25)

where 𝑈 is the sum of the breeding values attributable to the separate loci
and 𝐷 is the sum of all dominance deviations. For our purposes in livestock
breeding where we want to assess the genetic potential of a selection candidate
to be a parent of offspring forming the next generation, the breeding value
is the most important quantity. The breeding value is of primary importance
because a given parent passes a random sample of its alleles to its offspring. We
have seen in section 2.4.4 that breeding values are additive in the number of
favorable alleles. Hence the more favorable alleles a given parent passes to its
offspring the higher the breeding value of this parent.

On the other hand, the dominance deviation measures the effect of a certain
genotype occurring in an individual and the interaction deviation estimates the
effects of combining different genotypes at different loci in the genome. But
because parents do not pass complete genotypes nor do they pass stretches of
DNA with several loci, but only a random collection of its alleles, it is really the
breeding value that is of primary importance in assessing the genetic potential
of a given selection candidate.

2.6.2 Interaction Variance

If genotypes at different loci show epistatic interaction effects as described in
section 2.6.1, the interactions give rise to an additional variance component
called 𝑉𝐼 , which is the variance of interaction deviations. This new variance
component 𝑉𝐼 can be further decomposed into sub-components. The first level
of sub-components is according to the number of loci that are considered. Two-
way interactions involve two loci, three-way interactions consider three loci and
in general 𝑛-way interactions arise from 𝑛 different loci. The next level of
subdivision is according to whether they include additive effects, dominance
deviations or both.
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In general it can be said that for practical purposes, interaction effects explain
only a very small amount of the overall variation. As already mentioned in
section @ref(#epistatic-interaction) for livestock breeding, we are mostly inter-
ested in the additive effects. This is also true when looking at the variance
components. Hence dominance variance and variances of interaction deviations
are not used very often in practical livestock breeding application.

2.7 Genetic Models

In this chapter, we have seen how to model the genetic basis of a quantitative
trait when a single locus affects the trait of interest. We call this a single-locus
model. When several loci have an effect on a certain trait, then we talk about
a polygenic model. Letting the number of loci affecting a certain phenotype
tend to infinity, the resulting model is called infinitesimal model.

From a statistical point of view, the breeding values in an infinitesimal model
are considered as a random effect with a known distribution. Due to the central
limit theorem, this distribution is assumed to be a normal distribution. The
central limit theorem says that the distribution of any sum of a large number of
very small effects converges to a normal distribution. For our case where a given
trait of interest is thought to be influenced by a large number of genetic loci
each having a small effect, the sum of the breeding values of all loci together can
be approximated by a normal distribution. Figure (2.4) shows the distribution
for a sum of 10, 100 and 1000 components each. The histograms show a better
approximation to the normal distribution the larger the number of components
considered in the sum.

2.7.1 Model Usage In Routine Evaluations

Traditional prediction of breeding values before the introduction of genomic
selection is based on the infinitesimal model. When genomic selection was in-
troduced which takes into account the information from a large number of loci,
genomic breeding values are estimated using a polygenic model.

2.8 Appendix: Derivations

This section shows how the genetic variance in equation (2.21) is computed.
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Figure 2.4: Distribution of Sums of Different Numbers of Components

𝜎2
𝐺 = (𝐵𝑉11 + 𝐷11)2 ∗ 𝑝2

+ (𝐵𝑉12 + 𝐷12)2 ∗ 2𝑝𝑞
+ (𝐵𝑉22 + 𝐷22)2 ∗ 𝑞2

= (2𝑞𝛼 − 2𝑞2𝑑)2 ∗ 𝑝2

+ ((𝑞 − 𝑝)𝛼 + 2𝑝𝑞𝑑)2 ∗ 2𝑝𝑞
+ (−2𝑝𝛼 − 2𝑝2𝑑)2 ∗ 𝑞2

= (4𝑞2𝛼2 − 8𝑞3𝑑𝛼 + 4𝑞4𝑑2) ∗ 𝑝2

+ (𝑞2𝛼2 − 2𝑝𝑞𝛼2 + 𝑝2𝛼2 − 4(𝑞 − 𝑝)𝑝𝑞𝑑𝛼 + 4𝑝2𝑞2𝑑2) ∗ 2𝑝𝑞
+ (4𝑝2𝛼2 + 8𝑝3𝑑𝛼 + 4𝑝4𝛼2) ∗ 𝑞2

= 4𝑝2𝑞2𝛼2 − 8𝑝2𝑞3𝑑𝛼 + 4𝑝2𝑞4𝑑2

+ 2𝑝𝑞3𝛼2 − 4𝑝2𝑞2𝛼2 + 2𝑝3𝑞𝛼2

− 8𝑝3𝑞2𝑑𝛼 + 8𝑝2𝑞3𝑑𝛼 + 8𝑝3𝑞3𝑑2

+ 4𝑝2𝑞2𝛼2 + 8𝑝3𝑞2𝑑𝛼 + 4𝑝4𝑞2𝑑2

= 4𝑝2𝑞2𝛼2 + 4𝑝2𝑞4𝑑2

+ 2𝑝𝑞3𝛼2 + 2𝑝3𝑞𝛼2

+ 8𝑝3𝑞3𝑑2

+ 4𝑝4𝑞2𝑑2

= 2𝑝𝑞𝛼2 (𝑝2 + 2𝑝𝑞 + 𝑞2)
+ (2𝑝𝑞𝑑)2 (𝑝2 + 2𝑝𝑞 + 𝑞2)
= 2𝑝𝑞𝛼2 + (2𝑝𝑞𝑑)2

= 𝜎2
𝐴 + 𝜎2

𝐷 (2.26)
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From the last two lines of (2.26) it follows that 𝜎2
𝐴 = 2𝑝𝑞𝛼2 and 𝜎2

𝐷 = (2𝑝𝑞𝑑)2.
It can be shown that 𝜎2

𝐴 corresponds to the squared breeding values times the
associated genotype frequencies. Because the expected values of the breeding
values is zero, 𝜎2

𝐴 is equivalent to the variance of the breeding values.

𝜎2
𝐴 = 𝑉 𝑎𝑟 [𝐵𝑉 ] = (𝐵𝑉11 − 𝐸 [𝐵𝑉 ])2 ∗ 𝑓(𝐺1𝐺1)

+ (𝐵𝑉12 − 𝐸 [𝐵𝑉 ])2 ∗ 𝑓(𝐺1𝐺2)
+ (𝐵𝑉22 − 𝐸 [𝐵𝑉 ])2 ∗ 𝑓(𝐺2𝐺2)
= 𝐵𝑉 2

11 ∗ 𝑓(𝐺1𝐺1) + 𝐵𝑉 2
12 ∗ 𝑓(𝐺1𝐺2) + 𝐵𝑉 2

22 ∗ 𝑓(𝐺2𝐺2)
= (2𝑞𝛼)2 ∗ 𝑝2 + ((𝑞 − 𝑝)𝛼)2 ∗ 2𝑝𝑞 + (−2𝑝𝛼)2 ∗ 𝑞2

= 4𝑝2𝑞2𝛼2 + (𝑞2𝛼2 − 2𝑝𝑞𝛼2 + 𝑝2𝛼2) ∗ 2𝑝𝑞 + 4𝑝2𝑞2𝛼2

= 8𝑝2𝑞2𝛼2 + 2𝑝𝑞3𝛼2 − 4𝑝2𝑞2𝛼2 + 2𝑝3𝑞𝛼2

= 4𝑝2𝑞2𝛼2 + 2𝑝𝑞3𝛼2 + 2𝑝3𝑞𝛼2

= 2𝑝𝑞𝛼2 (2𝑝𝑞 + 𝑞2 + 𝑝2)
= 2𝑝𝑞𝛼2 (2.27)

In the above derivation in (2.27) of the variance of the breeding values, we were
using the fact that the expected value 𝐸 [𝐵𝑉 ] = 0. This can be shown more
formally as follows

𝐸 [𝐵𝑉 ] = 𝐵𝑉11 ∗ 𝑓(𝐺1𝐺1) + 𝐵𝑉12 ∗ 𝑓(𝐺1𝐺2) + 𝐵𝑉22 ∗ 𝑓(𝐺2𝐺2)
= 2𝑞𝛼 ∗ 𝑝2 + (𝑞 − 𝑝)𝛼 ∗ 2𝑝𝑞 + (−2𝑝𝛼) ∗ 𝑞2

= 2𝑝2𝑞𝛼 + 2𝑝𝑞2𝛼 − 2𝑝2𝑞𝛼 − 2𝑝𝑞2𝛼
= 0 (2.28)

Similarly to (2.27) we can show that 𝜎2
𝐷 corresponds to the squared dominance

deviations times the frequencies of the corresponding genotypes. That is the
reason why 𝜎2

𝐷 is called dominance variance.

𝜎2
𝐷 = 𝐷2

11 ∗ 𝑓(𝐺1𝐺1) + 𝐷2
12 ∗ 𝑓(𝐺1𝐺2) + 𝐷2

22 ∗ 𝑓(𝐺2𝐺2)
= (−2𝑞2𝑑)2 ∗ 𝑝2 + (2𝑝𝑞𝑑)2 ∗ 2𝑝𝑞 + (−2𝑝2𝑑)2 ∗ 𝑞2

= 4𝑝2𝑞4𝑑2 + 8𝑝3𝑞3𝑑2 + 4𝑝4𝑞2𝑑2

= 4𝑝2𝑞2𝑑2 (𝑞2 + 2𝑝𝑞 + 𝑝2)
= 4𝑝2𝑞2𝑑2 (2.29)
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Chapter 3

Genetic Evaluations

In chapter 2, we have already seen that the breeding value is a really important
concept. The Definition ?? of the term breeding value has some important
consequences.

• The breeding value is based on the average of a large number of offspring.
This is necessary, because offspring inherit a random sample of a parents
alleles. But not all offspring receive the same sample of alleles. Taking
the average of a large number of offspring reduces the effect of sampling
and thereby lets the breeding value converge to a stable value.

• The breeding value is defined as a deviation from the population mean.
This population mean depends on allele frequencies which are specific for
each population. Therefore breeding values can only be compared within
one population.

• Because the breeding value is defined as a deviation, the expected value of
the breeding values and the mean of all breeding values are 0 by definition.

3.1 Introduction

Because, in the more traditional setting1 of livestock breeding, we do not have
information about allele frequencies and about genotypic values, we have to
predict breeding values. For this prediction we can use different sources of
information. Currently, we are assuming that this information is all based on
records of phenotypic observations.

1That means, at this moment, we are ignoring all recent developments made such as ge-
nomic selection.

37
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3.1.1 The Basic Model

Although, the phenotypic observation might originate from different sources,
we can use one basic model for all of the breeding value predictions. We have
already seen a different form of this model in equation (1.1) in section 1.3.1.
The original model from equation (1.1) is modified and extended to the model
shown below.

𝑦𝑖𝑗 = 𝜇𝑖 + 𝑔𝑖 + 𝑒𝑖𝑗 (3.1)

where
𝑦𝑖𝑗 𝑗𝑡ℎ record of animal 𝑖
𝜇𝑖 identifiable fixed environmental effect
𝑔𝑖 sum of all additive (𝑢), dominance (𝑑) and epistatic effects

of the genotype of animal 𝑖
𝑒𝑖𝑗 random environmental effect associated to observation 𝑗 of

animal 𝑖
Livestock species are mostly diploid and hence from a given parent only one
allele of a given locus is passed to a gamete which can later be found in the
parents offspring. Any interaction effects caused by dominance or epistasis are
not preserved from parent to offspring. Only the additive effect of a given
allele is passed from parent to offspring. The additive genetic part (𝑢𝑖) of 𝑔𝑖 in
equation (3.1) represents the average genetic effect that animal 𝑖 receives from
its parents. It is therefore called the breeding value. Because the additive
genetic effect is a function of the alleles passed from the parents to the progeny,
it is the only component that can be selected for and is therefore the main
component of interest from a livestock breeding perspective. Due to the major
interest in the genetic additive component, the terms in the basic model in (3.1)
are re-arranged as follows.

𝑦𝑖𝑗 = 𝜇𝑖 + 𝑢𝑖 + 𝑒∗
𝑖𝑗 (3.2)

where
𝑦𝑖𝑗 𝑗𝑡ℎ record of animal 𝑖
𝜇𝑖 identifiable fixed environmental effect
𝑢𝑖 sum of all additive (𝑢) genetic effects of the genotype of

animal 𝑖
𝑒∗

𝑖𝑗 dominance, epistatic and random environmental effects of
the 𝑗𝑡ℎ record of animal 𝑖

The same re-arrangement of terms in the basic model is illustrated by Figure
3.1

Equation (3.2) constitutes the linear model that forms the basis for most prob-
lems of breeding value prediction in livestock breeding. Usually it is assumed
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Figure 3.1: Re-arrangment of Terms Representing Genetic Effects

that the phenotypic observations 𝑦𝑖𝑗 follow a multivariate normal distribution.
We have already seen in section 2.7 that the additive genetic effect (𝑢𝑖) is
thought to be the sum of a large number of unlinked loci that all contribute a
very small amount to the total breeding value. Then by the central limit theo-
rem it follows that 𝑢𝑖 converges to a normal distribution. By the same reasoning
that the environmental effect 𝑒∗

𝑖𝑗 is composed of very many small contributions,
also 𝑒∗

𝑖𝑗 converges to a normal distribution. From distribution theory it is known
that the sum of two normally distributed random variables (like 𝑢𝑖 and 𝑒∗

𝑖𝑗) plus
a fixed term (like 𝜇) is again a random variable that follows a normal distribu-
tion. We can conclude that the assumption that all the random effects (𝑦𝑖𝑗, 𝑢𝑖
and 𝑒∗

𝑖𝑗) in model (3.2) is consistent with distribution theory. Furthermore the
central limit theorem implies that in principle the number of breeding values
from single loci tends to infinity. That means the total breeding value 𝑢𝑖 cor-
responds to a sum of infinitely many contributions. Based on the fact that in
theory 𝑢𝑖 is composed of an infinite number of infinitely small components, the
model in (3.2) is called the infinitesimal model.

Concerning the variances, it is assumed that 𝑣𝑎𝑟(𝑦𝑖𝑗), 𝑣𝑎𝑟(𝑢𝑖) and 𝑣𝑎𝑟(𝑒𝑖𝑗) are
all known. Covariances (𝑐𝑜𝑣(𝑢𝑖, 𝑒𝑖𝑗)) between genetic and environmental effects
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and covariances (𝑐𝑜𝑣(𝑒∗
𝑖𝑗, 𝑒∗

𝑘𝑙)) between environmental effects of mates 𝑖 and 𝑘
are assumed to be zero, respectively.

Also 𝜇𝑖 which is used to represent the mean performance of animals in the same
identifiable environment such as herd or management group or have the same
sex or age, is assumed to be known.

3.1.2 Decomposition of Breeding Value

As already mentioned earlier, the breeding value 𝑢𝑖 of an individual 𝑖 represents
the average additive genetic effect that animal 𝑖 receives from its parents 𝑠 and
𝑑. Hence 𝑢𝑖 can be decomposed into

𝑢𝑖 = 1
2𝑢𝑠 + 1

2𝑢𝑑 + 𝑚𝑖 (3.3)

where 𝑢𝑠 and 𝑢𝑑 correspond to the breeding values of parents 𝑠 and 𝑑, respec-
tively and 𝑚𝑖 is the deviation of 𝑢𝑖 from the average breeding values of the
parents and is called Mendelian sampling. The term 𝑚𝑖 is necessary, be-
cause two fullsibs 𝑖 and 𝑘 both having parents 𝑠 and 𝑑 receive different random
samples of the set of parental alleles. Hence the breeding values 𝑢𝑖 and 𝑢𝑘 of
fullsibs 𝑖 and 𝑘 are not going to be the same. The difference between breeding
values 𝑢𝑖 and 𝑢𝑘 is reflected in the different Mendelian sampling terms 𝑚𝑖 and
𝑚𝑘 for fullsibs 𝑖 and 𝑘.

3.2 Basic Principle of Predicting Breeding Val-
ues

The prediction of breeding values mostly follows the same principles. From the
point of view of statistics, estimations or predictions are always a function of
the observed data. When looking at the model in (3.2), we can probably guess
that the observed phenotypic records (𝑦𝑖𝑗) must be corrected somehow for the
identifiable environmental effects represented by 𝜇𝑖. The second influence that
we want to consider when predicting breeding values is how “closely related” the
observed record 𝑦𝑖𝑗 is to the breeding value. For traits where the influence of the
genetic component is not very strong, it is probably a good idea to down-weigh
the information from 𝑦𝑖𝑗.

The two principles just described can be generalized as follows. Breeding values
are predicted according to the following two steps.

1. Observations are corrected for the mean performance values of animals
under the same environmental conditions. The conditions are described
by the effects captured in 𝜇𝑖.
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2. The corrected observations are weighted by a factor that reflects the
amount of information that is available for the prediction of an animals
breeding value.

In what follows, we have a look at how breeding values are predicted from
different sources of information.

3.3 Animal’s Own Performance

3.3.1 Single Record

When one phenotypic observation per animal is the only information we have
available, the predictor ̂𝑢𝑖 of the breeding value 𝑢𝑖 of animal 𝑖 can be derived
according to the following line of argument. Let us assume for a moment that
we know the true breeding value 𝑢𝑖 for a population of animals. In addition to
that each animal 𝑖 has one observation 𝑦𝑖 available. Then we plot the values of
𝑢𝑖 against the values of 𝑦𝑖 for the complete population.

ui

uiu

Figure 3.2: Regression of Breeding Values onto Phenotypic Observations
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The plot in Figure 3.2 suggests that we fit a regression of the breeding values
onto the phenotypic records. The fitted regression is represented by the red
line. Hence as soon as we can draw the regression line, we can predict breeding
values based on the phenotypic observations. The predicted breeding value ̂𝑢𝑖
for a given 𝑦𝑖 corresponds to the value on the red line corresponding to the value
of 𝑦𝑖. The slope of the regression line corresponds to the regression coefficient
𝑏. From regression theory, the coefficient 𝑏 is computed as

𝑏 = 𝑐𝑜𝑣(𝑢, 𝑦)
𝑣𝑎𝑟(𝑦)

= 𝑐𝑜𝑣(𝑢, 𝜇 + 𝑢 + 𝑒)
𝑣𝑎𝑟(𝑦)

= 𝑐𝑜𝑣(𝑢, 𝑢)
𝑣𝑎𝑟(𝑦)

= 𝑣𝑎𝑟(𝑢)
𝑣𝑎𝑟(𝑦)

= ℎ2 (3.4)

where ℎ2 corresponds to the ratio between the genetic additive and the pheno-
typic variance and is called heritability. We are using the regression coefficient
to predict the breeding value for animal 𝑖 based on a single record 𝑦𝑖.

̂𝑢𝑖 = 𝑏 ∗ (𝑦𝑖 − 𝜇)
= ℎ2 ∗ (𝑦𝑖 − 𝜇) (3.5)

From that it follows that the predicted breeding value for an animal based on
a single own performance record corresponds to the observation corrected for
the general mean 𝜇 times the heritability. The correlation between the selec-
tion criterion, in our case the phenotypic record and the true breeding value is
known as the accuracy of the prediction. It provides a means of evaluating the
different selection criteria. The higher the correlation between selection crite-
rion and breeding value, the better is the prediction. Sometimes the accuracy
of evaluation is reported in terms of reliability (𝑟2) which corresponds to the
squared correlation between selection criterion and true breeding value. With
a single own performance record per animal, the correlation is
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𝑟𝑢,𝑦 = 𝑐𝑜𝑣(𝑢, 𝑦)
𝜎𝑢 𝜎𝑦

= 𝜎2
𝑢

𝜎𝑢 𝜎𝑦

= 𝜎𝑢
𝜎𝑦

= ℎ (3.6)

An alternative way to assess the quality of the breeding value prediction is to
compute the variance of the predicted breeding values.

𝑣𝑎𝑟( ̂𝑢𝑖) = 𝑣𝑎𝑟(𝑏𝑦) = 𝑣𝑎𝑟(ℎ2𝑦)
= ℎ4𝑣𝑎𝑟(𝑦)
= 𝑟2

𝑢,𝑦ℎ2𝜎2
𝑦

= 𝑟2
𝑢,𝑦𝜎2

𝑎 (3.7)

Hence the variance of the predicted breeding values corresponds to the product
of the reliability times the genetic additive variance. The expected response (𝑅)
to selection on the basis of one record per animal is

𝑅 = 𝑖 ∗ 𝑟2
𝑢,𝑦 ∗ 𝜎𝑦 = 𝑖 ∗ ℎ2 ∗ 𝜎𝑦 (3.8)

where 𝑖, the selection intensity refers to the superiority of selected individuals
above population mean expressed in phenotypic standard deviation.

3.3.2 Repeated Records

When animals get older, it is likely that we can observe multiple measurements
for the same trait. An example is milk yield in dairy cows where a cow might
have repeated lactation records. The breeding value of an animal may be pre-
dicted based on the mean of the repeated records. With repeated records, an
additional resemblance between the records of an animal due to permanent en-
vironmental factors occurs. The between-animal variance is partly genetic and
partly caused by permanent environmental effects. The within-animal variance
is attributed to differences between the successive measurements of the animal
arising from temporary environmental variations, i.e., from environmental fac-
tors that change over time. The variance of observations (𝑣𝑎𝑟(𝑦)) can therefore
be partitioned as
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𝑣𝑎𝑟(𝑦) = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑝𝑒) + 𝑣𝑎𝑟(𝑡𝑒) (3.9)

where 𝑣𝑎𝑟(𝑢) is the genetic additive variance, 𝑣𝑎𝑟(𝑝𝑒) the variance due to per-
manent environmental effects and 𝑣𝑎𝑟(𝑡𝑒) the variance due to temporary envi-
ronmental effects.

The intra-class correlation 𝑡 is defined as the ratio of the genetic plus the per-
manent environmental variance divided by the phenotypic variance.

𝑡 = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑝𝑒)
𝑣𝑎𝑟(𝑦) (3.10)

The term 𝑡 is also called repeatability and it measures the correlation between
the records of an individual. From (3.10) it follows that

1 − 𝑡 = 𝑣𝑎𝑟(𝑡𝑒)
𝑣𝑎𝑟(𝑦) (3.11)

With this model, it is assumed that the repeated records on the animal are the
same trait. Therefore the genetic correlation between all pairs of records is one.
We also assume that all records have equal variance and that the environmental
correlations between all pairs of records are equal. Let ̃𝑦 represent the mean of
𝑛 records on animal 𝑖 which means

̃𝑦𝑖 = 1
𝑛

𝑛
∑
𝑘=1

𝑦𝑖𝑘

= 1
𝑛

𝑛
∑
𝑘=1

(𝜇 + 𝑢𝑖 + 𝑝𝑒𝑖 + 𝑡𝑒𝑖𝑘)

= 𝜇 + 𝑢𝑖 + 𝑝𝑒𝑖 +
𝑛

∑
𝑘=1

𝑡𝑒𝑖𝑘 (3.12)

In this case, we use the mean ( ̃𝑦𝑖) to predict the breeding value ( ̂𝑢𝑖)

̂𝑢𝑖 = 𝑏( ̃𝑦𝑖 − 𝜇) (3.13)

where

𝑏 = 𝑐𝑜𝑣(𝑢, ̃𝑦)
𝑣𝑎𝑟( ̃𝑦) (3.14)

The single elements are computed as
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𝑐𝑜𝑣(𝑢, ̃𝑦) = 𝑐𝑜𝑣(𝑢, 𝜇 + 𝑢 + 𝑝𝑒 + 1
𝑛

𝑛
∑
𝑘=1

𝑡𝑒𝑘) = 𝑣𝑎𝑟(𝑢) = 𝜎2
𝑢 (3.15)

and

𝑣𝑎𝑟( ̃𝑦) = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑝𝑒) + 1
𝑛𝑣𝑎𝑟(𝑡𝑒) (3.16)

Expressing (3.16) in terms of (3.10) and (3.11) leads to

𝑣𝑎𝑟( ̃𝑦) = 𝑡 ∗ 𝜎2
𝑦 + 1

𝑛(1 − 𝑡) ∗ 𝜎2
𝑦

= 1
𝑛 (𝑛 ∗ 𝑡 + (1 − 𝑡)) 𝜎2

𝑦

= 1 + (𝑛 − 1)𝑡
𝑛 𝜎2

𝑦 (3.17)

Inserting this into (3.14) results in

𝑏 = 𝑐𝑜𝑣(𝑢, ̃𝑦)
𝑣𝑎𝑟( ̃𝑦)

= 𝑛𝜎2
𝑢

(1 + (𝑛 − 1)𝑡)𝜎2𝑦

= 𝑛ℎ2

1 + (𝑛 − 1)𝑡 (3.18)

When we predict the breeding value 𝑢𝑖 of animal 𝑖 using repeated records, the
regression coefficient 𝑏 depends on

1. the heritability (ℎ2)
2. the repeatability (𝑡) and
3. the number (𝑛) of repeated records per animal

The difference between repeated records of an animal is assumed to be due to
temporary environmental differences between successive performances. How-
ever, if successive records are known to be affected by factors which influence
performance, these must be corrected for. For instance, differences in age at
calving in first and second lactations may influence milk yield in first and sec-
ond lactation. Such age differences should be adjusted for before using the
means of both lactations for breeding value prediction.

The accuracies of the predicted breeding value using repeated records is
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𝑟𝑢, ̃𝑦 = 𝑐𝑜𝑣(𝑢, ̃𝑦)
𝜎𝑢𝜎𝑦

= 𝜎2
𝑢

𝜎𝑢√(1 + (𝑛 − 1)𝑡)/𝑛𝜎2𝑦

= ℎ√𝑛/(1 + (𝑛 − 1)𝑡)
= √𝑛ℎ2/(1 + (𝑛 − 1)𝑡)
=

√
𝑏 (3.19)

The expected response to selection using repeated records will be covered in an
exercise.

3.4 Progeny Records

For traits that are recorded only on female animals, the prediction of breeding
values for male animals (sires) is usually based on the mean of their female
progeny. This is typical in dairy cattle, where bulls are evaluated on the basis
of their daughters. Let ̄𝑦𝑖 be the mean of single records of 𝑛 daughters of
sire 𝑖 with the assumption that the daughters are only related through the sire
(paternal half-sibs), the predicted breeding value of sire i can then be computed
as

̂𝑢𝑖 = 𝑏 ∗ ( ̄𝑦𝑖 − 𝜇) (3.20)

where

𝑏 = 𝑐𝑜𝑣(𝑢, ̄𝑦)
𝑣𝑎𝑟( ̄𝑦) (3.21)

and
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̄𝑦 = 1
𝑛

𝑛
∑
𝑘=1

𝑦𝑘

= 1
𝑛

𝑛
∑
𝑘=1

(𝜇 + 𝑢𝑘 + 𝑒𝑘)

= 𝜇 + 1
𝑛

𝑛
∑
𝑘=1

(𝑢𝑘 + 𝑒𝑘)

= 𝜇 + 1
𝑛

𝑛
∑
𝑘=1

(1/2𝑢𝑠 + 1/2𝑢𝑑𝑘 + 𝑚𝑘 + 𝑒𝑘)

= 𝜇 + 1/2𝑢𝑠 + 1
𝑛

𝑛
∑
𝑘=1

(1/2𝑢𝑑𝑘 + 𝑚𝑘 + 𝑒𝑘)

= 𝜇 + 1/2𝑢𝑠 + 1
𝑛

𝑛
∑
𝑘=1

1/2𝑢𝑑𝑘 + 1
𝑛

𝑛
∑
𝑘=1

𝑒𝑘 (3.22)

In the current case of using progeny records to predict a breeding value, we have

𝑐𝑜𝑣(𝑢, ̄𝑦) = 𝑐𝑜𝑣(𝑢, 1
2𝑢𝑠 + 1

2
1
𝑛

𝑛
∑
𝑘=1

𝑢𝑑,𝑘 + 1
𝑛

𝑛
∑
𝑘=1

𝑚𝑘 + 1
𝑛

𝑛
∑
𝑘=1

𝑒𝑘)

= 𝑐𝑜𝑣(𝑢, 1
2𝑢𝑠)

= 1
2𝑐𝑜𝑣(𝑢, 𝑢𝑠)

= 1
2𝜎2

𝑢 (3.23)

where 𝑢𝑠 and 𝑢𝑑,𝑘 denote the breeding values of sire 𝑠 and dam 𝑑 of offspring
𝑘, respectively and 𝑚𝑘 and 𝑒𝑘 stand for the mendelian sampling and the envi-
ronmental effect of daughter 𝑘. Using the same principles as in section 3.3.2,
we get

𝑣𝑎𝑟( ̄𝑦) = (𝑡 + (1 − 𝑡)/𝑛)𝜎2
𝑦 (3.24)

where 𝜎2
𝑦 = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑒) = 𝜎2

𝑢 + 𝜎2
𝑒 .

Assuming there is no environmental covariance between half-sib records and the
intra-class correlation 𝑡 is 1/4𝜎2

𝑢
𝜎2𝑦

. Then we can compute the regression coefficient
as
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𝑏 = 1/2𝜎2
𝑢

(𝑡 + (1 − 𝑡)/𝑛)𝜎2𝑦

= 1/2ℎ2𝜎2
𝑦

( 1
4 ℎ2 + (1 − 1

4 ℎ2)/𝑛)𝜎2𝑦

= 2𝑛ℎ2

𝑛ℎ2 + (4 − ℎ2)
= 2𝑛

𝑛 + (4 − ℎ2)/ℎ2

= 2𝑛
𝑛 + 𝑘 (3.25)

with 𝑘 = 4−ℎ2
ℎ2 .

The term 𝑘 is constant for any assumed heritability (ℎ2). The regression co-
efficient (𝑏) depends on the heritability and number of progeny and converges
towards a limit of 2 as the number of daughters increases.

The accuracy of the estimated breeding value is

𝑟𝑢, ̄𝑦 = 𝑐𝑜𝑣(𝑢, ̄𝑦)
√𝑣𝑎𝑟(𝑢)𝑣𝑎𝑟( ̄𝑦)

= 1/2ℎ2𝜎2
𝑦

√ℎ2𝜎2𝑦( 1
4 ℎ2 + (1 − 1

4 ℎ2)/𝑛)𝜎2𝑦

= 1/2ℎ
√ 1

4 ℎ2 + (1 − 1
4 ℎ2)/𝑛

= √ 𝑛ℎ2

𝑛ℎ2 + (4 − ℎ2)

= √ 𝑛
𝑛 + 𝑘 (3.26)

The term for 𝑟𝑢, ̄𝑦 in (3.26) approaches 1 as the number of progeny increases,
assuming 𝑘 is constant. The reliability (𝑟2

𝑢, ̄𝑦) of the predicted breeding value is
𝑛/(𝑛 + 𝑘) and corresponds to 1/2 ∗ 𝑏 computed in (3.25).



Chapter 4

Best Linear Unbiased
Prediction (BLUP)

The prediction of breeding values requires to correct the information sources for
an appropriate comparison value. So far we have referred to that comparison
value as the population mean and we have assumed this correction value to
be known. In reality, the computation of these comparison values is a difficult
problem. This problem is one of the reasons that nowadays the predictions of
all breeding values are based on a method that is called BLUP. In this chapter,
we first want to have a closer look at the problem of computing these correction
factors with which the information sources must be adjusted. After that, the
BLUP method will be introduced.

4.1 Problem of Correction

In theory, the population mean is the ideal correction value for all information
sources. From our standard model we can derive

𝑦 = 𝜇 + 𝑢 + 𝑒 → ̄𝑦 = ̄𝜇 + 𝑢̄ + ̄𝑒 = 𝜇 (4.1)

Because, we defined the true breeding value 𝑢 and the non-identifiable environ-
mental effects 𝑒 as deviations from a common mean, the average effect of all
identifiable environmental components is captured by the population mean 𝜇.
But this is only true in an idealized population where all selection candidates
are kept in the same environment and where they deliver their performances
at the same time. In real world scenarios, this is unrealistic, because e.g. own
performance values and progeny performances cannot be delivered at the same
time. Furthermore, selection candidates are kept in different herds in different

49
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environments. All these factors do have an influence on the performance of
the recorded animals and hence on the predicted breeding values. But good
methods for predicting breeding values should be able to correct for such en-
vironmental influences. If that is not the case, environmental factors will bias
the predicted breeding values. To avoid such biases, performance records were
subdivided into environmental classes. In dairy cattle such classes were formed
based on herds, calving year, calving season and age at first calving. In pigs,
performance records might be divided into herds, years and fattening batches.
From now on, we call the combination of these environmental effects on the per-
formance records as identifiable systematic fixed effects. For the prediction
of breeding values, we assume that these fixed effects in a given comparison class
have all the same influence on the performance of the animals that are in the
same class. Hence if we group all animals who show the same levels of all fixed
effects into one comparison class, any biases from the identifiable environment
can be avoided.

The more environmental factors can be considered in forming the comparison
classes, the better we can correct our performance records for the environmental
effects. But when the number of environmental factors increases the number
of animals per comparison class decreases. From the statistical point of view,
the small number of observations in comparison classes reduce the accuracy
with which the environmental fixed effects can be estimated. With smaller
comparison groups, the risk that the average breeding value of animals in such
a comparison is not zero increases. In case the average breeding value in a
comparison group is not zero, predicted breeding values show a deviation which
is called bias. The occurrence of bias can be shown as follows. Let us assume
the average performance of all animals in a comparison group (CG) to be ̄𝑦𝐶𝐺:

̄𝑦𝐶𝐺 = 𝜇 + 𝑢̄𝐶𝐺 + ̄𝑒𝐶𝐺 (4.2)

In case the average breeding value 𝑢̄𝐶𝐺 is zero, the population mean 𝜇 measures
the average identifiable environment effect. If 𝑢̄𝐶𝐺 is not zero, then the predicted
breeding value 𝑢̂𝑖 using an older method called selection index, the index value
𝐼 corresponds to

𝐼 = 𝑏(𝑦𝑖 − (𝜇 + 𝑢̄𝐶𝐺))
= 𝑏(𝑦𝑖 − 𝜇) − 𝑏𝑢̄𝐶𝐺
= 𝑢̂𝑖 − 𝑏𝑢̄𝐶𝐺 (4.3)

The first term in the result of (4.3) corresponds to the predicted breeding value
where the second term measures the bias. This depends on the average breeding
values of the animals of the comparison group. If the average breeding value
of all animals in the comparison group is zero, then the predicted breeding
value from (4.3) is unbiased. Because we have to know the breeding values
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of the animals in the comparison group to get an unbiased prediction of the
breeding value for a given animal and the breeding values of the animals in the
comparison group must also be predicted, this consists of a “chicken-and-egg”
problem which cannot be solved.

The solution to this was presented by Charles R. Henderson in several pub-
lications ((Henderson, 1973)) and (Henderson, 1975)). The key idea behind
the solution is to estimate the identifiable environmental factors as fixed ef-
fects and to predict the breeding values as random effects simultaneously in a
linear mixed effects model. The properties of the methodology developed by
Henderson are similar to those of the selection index method. But the main
advantage of Henderson’s methodologies is that phenotypic records do not need
to be corrected before breeding values can be predicted. But the effects of
the identifiable environmental factors are also a result which come out of the
analysis. The methodology developed by Henderson is called BLUP and the
properties of this methodology are directly incorporated into the name where

• B stands for best which means that the correlation between the true (𝑢)
and the predicted breeding value (𝑢̂) is maximal or the prediction error
variance (𝑣𝑎𝑟(𝑢 − 𝑢̂)) is minimal.

• L stands for linear which means the predicted breeding values are linear
functions of the observations (𝑦)

• U stands for unbiased which means that the expected values of the pre-
dicted breeding values are equal to the true breeding values

• P stands for prediction

BLUP based approaches have found widespread usage in genetic evaluations.
They are used for both traditional predictions of breeding values and also for
predicting genomic breeding values. The popularity of BLUP is not only due
to the theoretical foundations behind BLUP, but Henderson has also developed
efficient algorithms to be able to compute predicted breeding values for very
large livestock breeding populations. The theoretic foundations, the develop-
ment of efficient algorithms together with the availability of large computational
resources at a very low price have made BLUP to become the de-facto standard
methodology for predicting breeding values.

4.2 Numeric Example

We want to use a concrete numeric example of a small population to explain
how breeding values are predicted using the BLUP methodology. The pheno-
typic observations consist of measurements of the trait weaning weight in beef
cattle. Table 4.1 gives an overview of the dataset.
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Table 4.1: Example Data Set for Weaning Weight in Beef Cattle

Animal Sire Dam Herd Weaning Weight
12 1 4 1 2.61
13 1 4 1 2.31
14 1 5 1 2.44
15 1 5 1 2.41
16 1 6 2 2.51
17 1 6 2 2.55
18 1 7 2 2.14
19 1 7 2 2.61
20 2 8 1 2.34
21 2 8 1 1.99
22 2 9 1 3.10
23 2 9 1 2.81
24 2 10 2 2.14
25 2 10 2 2.41
26 3 11 2 2.54
27 3 11 2 3.16

We assume the phenotypic variance (𝜎2
𝑝) to be 0.1014 and the heritability (ℎ2)

corresponds to 0.25.

4.3 Linear Mixed Effects Model

A simple linear model contains fixed effects such as herd or sex of an animal
and tries to explain the observations as linear functions of such effects. Because
the effects considered in a model cannot account for all influences of a given
set of observations, every model must have a random residual component. If a
linear model contains besides the residuals any additional random effects, then
this model is called a mixed linear effects model.

4.3.1 Fixed Versus Random Effects

Unfortunately, there is no unique and generally accepted definition of which ef-
fects should be fixed and which should be random. There are generally accepted
guidelines of how to classify effects as fixed or as random. Table 4.2 lists a few
criteria that might be helpful.
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Table 4.2: Classification Factors of Fixed and Random Effects

fixed effect random effects

classes can be defined exactly realized value come from an underlying
distribution

the value of a class does not have an apriori
expected value

each realization is unique

values are exactly estimable observations are influenced by the variance of
the random effect

the expected value of a class effect is of primary
interest

main interest is on the variance not on the
expected value

fixed effects can be corrected for

Certain factors such as herd, sex, breed or feeding regimes can be classified
unambiguously as fixed effects. On the other hand breeding values are always
random effects. Because, we know that breeding values have an expected value
of 0 and have a certain variance, they must be modeled as random effects where
these properties can be integrated into the model. Furthermore, each animal
has a different realization of a breeding value. Exceptions are mono-clonal twins
and clones.

From a practical point of view, the software program that is used to analyse
the data has also an influence on whether a certain effect is treated as fixed or
as random. If a certain effect has very many levels such as herds, then it is
sometimes better for the analysis to treat such an effect as random.

4.3.2 Model Specification

In a linear mixed effects model a single observation 𝑦𝑖𝑗𝑘 is decomposed according
to equation (4.4)

𝑦𝑖𝑗𝑘 = 𝛽𝑖 + 𝑢𝑗 + 𝑒𝑖𝑗𝑘 (4.4)

where 𝛽𝑖 stands for the 𝑖−𝑡ℎ level of a fixed effect, 𝑢𝑗 is the 𝑗 − 𝑡ℎ realization
of the random effect 𝑢 and 𝑒𝑖𝑗𝑘 is the residual effect of the 𝑘−𝑡ℎ observation}.
Because, we do not want to model just one observation, but we want to include
all observations of a complete population, it is helpful to convert the model in
(4.4) into matrix-vector notation. This is shown in equation (4.5)

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 (4.5)
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where
𝑦 vector of length 𝑛 of all observations
𝛽 vector of length 𝑝 of all fixed effects
𝑋 𝑛 × 𝑝 design matrix linking the fixed effects to the observations
𝑢 vector of length 𝑛𝑢 of random effects
𝑍 𝑛 × 𝑛𝑢 design matrix linking random effect to the observations
𝑒 vector of length 𝑛 of random residual effects.

Furthermore, we assume the following relations for the expected values and for
the variances. As already mentioned the random effects are defined as deviations
and hence their expected value is set to zero.

𝐸(𝑢) = 0 and 𝐸(𝑒) = 0 (4.6)

From this it follows that 𝐸(𝑦) = 𝑋𝛽. The variance-covariance matrices for the
random effects are set to

𝑣𝑎𝑟(𝑢) = 𝐺 and 𝑣𝑎𝑟(𝑒) = 𝑅 (4.7)

Under the assumption that 𝑐𝑜𝑣(𝑢, 𝑒𝑇 ) = 0, we can compute 𝑣𝑎𝑟(𝑦) = 𝑍∗𝑣𝑎𝑟(𝑢)∗
𝑍𝑇 + 𝑣𝑎𝑟(𝑒) = 𝑍𝐺𝑍𝑇 + 𝑅 = 𝑉 .

In model (4.5) the vectors 𝛽 and 𝑢 are unknown. The solution of the model
(4.5) for the unknowns 𝛽 and 𝑢 leads to estimates ̂𝛽 for the fixed effects 𝛽 and
for predicted random effects 𝑢̂. Unlike with the selection index, with BLUP, we
do not have to correct the observations before predicting random effects.

4.3.3 The Solution

An outline of how to derive the BLUP solutions for ̂𝛽 and 𝑢̂ will be given in an
Appendix. The details of this derivation are not important. Therefore, we are
presenting here directly the result which are

𝑢̂ = 𝐺𝑍𝑇 𝑉 −1(𝑦 − 𝑋 ̂𝛽) (4.8)

We call 𝑢̂ the best linear unbiased prediction of 𝑢 or shorter 𝑢̂ = 𝐵𝐿𝑈𝑃(𝑢). For
̂𝛽, we insert the generalized least squares estimator (GLS) which corresponds to

̂𝛽 = (𝑋𝑇 𝑉 −1𝑋)−𝑋𝑇 𝑉 −1𝑦 (4.9)

The matrix (𝑋𝑇 𝑉 −1𝑋)− denotes the generalized inverse of the matrix
(𝑋𝑇 𝑉 −1𝑋). The generalized inverse 𝐾− can be replaced with the simple
inverse 𝐾−1, whenever the columns of matrix 𝐾 are linearly independent1.

1For our examples that are shown here, we can always use the simple inverse.
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Analogously to 𝑢̂, ̂𝛽 is called the best linear unbiased estimator of the fixed
effects 𝛽. In short, we can state ̂𝛽 = 𝐵𝐿𝑈𝐸(𝛽).

4.3.4 Mixed Model Equations

The solutions shown in (4.8) for 𝑢̂ and in (4.9) for ̂𝛽 are not suitable for practical
purposes. Both solutions contain the inverse 𝑉 −1 of matrix 𝑉 . The matrix 𝑉
corresponds to the variance-covariance matrix of all observations 𝑦. The inverse
matrix 𝑉 −1 is not easy to compute and furthermore procedures to invert general
matrices are computationally expensive and are prone to rounding errors. In
one of his many papers, Henderson has shown that the results for 𝑢̂ and ̂𝛽 are
the same when solving the following system of equations simultaneously.

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑍
𝑍𝑇 𝑅−1𝑋 𝑍𝑇 𝑅−1𝑍 + 𝐺−1 ] [ ̂𝛽

𝑢̂ ] = [ 𝑋𝑇 𝑅−1𝑦
𝑍𝑇 𝑅−1𝑦 ] (4.10)

The above shown equations are called mixed model equations (MME). They
do no longer contain the inverse 𝑉 1 and hence these MME are much simpler to
solve. The MME contain the inverses 𝑅−1 and 𝐺−1, but we will see with concrete
examples that they are much easier to invert. As a consequence, whenever
we have to predict breeding values using BLUP, we will use the mixed model
equations shown in (4.10).

4.4 Sire Model

The application of the linear mixed effects model from (4.5) to the numerical
example in table 4.1. As random effects 𝑢 we are taking the father 𝑠 of each
animal 𝑖 with an observation. As fixed effects 𝛽 we are using the herd effect.
When fathers are modeled as random effects, then we call this model a sire
model. Setting up a sire model for the data in table 4.1 looks as follows
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1.99
3.1
2.81
2.14
2.41
2.54
3.16

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[𝛽1
𝛽2

] +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡⎢
⎣

𝑠1
𝑠2
𝑠3

⎤⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6
𝑒7
𝑒8
𝑒9
𝑒10
𝑒11
𝑒12
𝑒13
𝑒14
𝑒15
𝑒16

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Besides the equation for the sire model we also have to specify the expected
values and the variances of all random components. To be able to distinguish
the sire model from the general linear mixed effects model, we usually call the
random sire effect 𝑠 and no longer 𝑢. The expected values for the random
variables were already stated when discussing the general linear mixed effects
model in section 4.3.2. Hence

𝐸(𝑠) = 0 and 𝐸(𝑒) = 0 → 𝐸(𝑦) = 𝑋𝛽 (4.11)

For the variances there are a few simplifications that we can use in our sire
model. The covariance between the random effects 𝑠 and 𝑒 are assumed to be
0. The covariances among the single residual effects are also assumed to be 0.
Hence, the variance-covariance matrix of the residual effects are 𝑣𝑎𝑟(𝑒) = 𝐼 ∗𝜎2

𝑒 .
The variance of the sire effects 𝑠 is

𝑣𝑎𝑟(𝑠) = 𝐴𝑠 ∗ 𝜎2
𝑠 = 𝐺

where 𝐴𝑠 is the additive genetic relationship matrix between the sires. We will
be deriving the matrix 𝐴𝑠 in a later chapter. Because our sires are not related,
we can say that 𝐴𝑠 = 𝐼 and hence

𝐺 = 𝐼 ∗ 𝜎2
𝑢
4

Now we are ready to set up the mixed model equations from (4.10) for the
sire model. The computation of the numerical solutions from the mixed model
equations will be the topic of an exercise.
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4.5 Animal Model

The mixed model equations are a universal tool to find BLUPs of random effects
and BLUEs of fixed effect simultaneously. On the other hand it is not satisfac-
tory that with the sire model only sires obtain predicted breeding values. All
information that is known about the mothers was completely ignored when we
specified the sire model. A better approach would be to combine all available
information from a given population. This can be done by replacing in the sire
model the random sire effects by random animals effects. As a result each an-
imal in the dataset receives a random effect which models its breeding value.
This type of model is called an animal model. Because the animal model has
the breeding values of all animals as random effects, they are often referred to
with the variable or the vector 𝑎2 and no longer 𝑠 as in the sire model. The
variance-covariance matrix (𝑣𝑎𝑟(𝑎)) between all animal effects is proportional
to the additive genetic relationship matrix 𝐴 among all animals. We will see in
a later chapter how to compute the matrix 𝐴.

2This is not the same as the genotypic value in a single locus model.
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Chapter 5

Genetic Covariances
Between Animals

The prediction of breeding values using BLUP as shown in chapter 4 uses linear
mixed effects models where the breeding value of each animal is included as
a random effect. Linear mixed effect models in general and specifically Hen-
derson’s mixed model equations require us to be able to specify the variance-
covariance matrix of all random effects. When using the animal model, the
breeding value of each animal is included as a random effect in the linear mixed
effects model. As a consequence of that we need to determine the covariance
between the true breeding values of all animals. Figure 5.1 tries to display the
structure of the required variance-covariance diagrammatically.

The variance-covariance matrix shown at the bottom of Figure 5.1 has the vari-
ances of the true breeding values on the diagonal and all the covariances be-
tween the true breeding values of all animals as offdiagonal elements. From the
formulation of the linear mixed effect model in (4.5), we defined the variance-
covariance matrix of the random effects 𝑢 to be 𝐺 (see equation (4.7)). When
predicting breeding values with the animal model, the variance-covariance ma-
trix of all components in the vector 𝑢 is defined as

𝑣𝑎𝑟(𝑢) = 𝐺 = 𝐴 ∗ 𝜎2
𝑢 (5.1)

where the matrix 𝐴 is called numerator relationship matrix.

5.1 Similarity Between Individuals

At the genetic level there are two different kinds of similarity

59
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Pedigree

1 2

3 4 5

Model

animalmodelformula

y = X %beta  + Z left [ stack{a_1 # a_2 # a_3 # a_4 # a_5}  right
] + e

y=X β +Z [
a1
a2
a3
a4
a5

]+e

Variance-Covariance

u1 u2 u3 u4 u5

u1 
u2

u3

u4

u5

var(u1) cov(u1,u2) cov(u1,u3) cov(u1,u4) cov(u1,u5)

var(u2)

var(u3)

var(u4)

var(u5)

cov(u2,u3) cov(u2,u4)

cov(u3,u4)

cov(u2,u5)

cov(u3,u5)

cov(u4,u5)

u1 
u2

u3

u4

u5

Figure 5.1: Genetic Covariance Between Animals

1. Identity by descent (IBD)
2. Identity by state

Figure 5.2 illustrates the difference between the two type of identities. The
type of graph shown in Figure 5.2 is called a pedigree which is commonly
used to display the relationship between animals in a population. The rectangle
symbols denote male animals and the round symbols stand for female animals.
The horizontal connections between female and male animals denote a mating.
All animals connected to a vertical line and follow below are progeny of the
connected parents.

The notations inside of the symbols stand for the different genotypes of the
animals on a given locus. The red arrows denote the path of two 𝐴1-alleles which
are copies of the same ancestral allele. These two copies are called identical by
descent (IBD). The green arrows show the path of two alleles which are identical
by state which do not originate from the same copy of any given ancestral alleles.
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A1A2 A1A2 A1A3 A1A3

A1A2 A1A3 A1A3

A1A1 A3A3

IBD IBS

Figure 5.2: Identity by State Versus Identity by Descent

5.2 Numerator Relationship Matrix

The probability of identical genes by descent (IBD) occurring in two individuals
is termed the co-ancestry or the coefficient of kinship [(Falconer and Mackay,
1996)]. The additive genetic relationship between two individuals is twice their
co-ancestry. The matrix that expresses the additive genetic relationship among
animals in a population is called the numerator relationship matrix 𝐴. The
matrix 𝐴 is symmetric and its diagonal elements (𝐴)𝑖𝑖 are equal to 1+𝐹𝑖 where
𝐹𝑖 is the coefficient of inbreeding of animal 𝑖. The coefficient of inbreeding
𝐹𝑖 indicates whether an animal 𝑖 is inbred or not. 𝐹𝑖 is defined to be half
the additive genetic relationship between the parents of 𝑖. Hence the diagonal
element (𝐴)𝑖𝑖 of matrix 𝐴 corresponds to twice the probability that two gametes
taken at random from an animal 𝑖 will carry IBD-alleles.

The off-diagonal elements (𝐴)𝑖𝑗 equals the numerator of the coefficient of re-
lationship between animals 𝑖 and 𝑗. Multiplying the matrix 𝐴 by the additive
genetic variance 𝜎2

𝑢 leads to the covariance among breeding values. Thus if 𝑢𝑖
is the breeding value of animal 𝑖 then
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𝑣𝑎𝑟(𝑢𝑖) = (𝐴)𝑖𝑖𝜎2
𝑢 = (1 + 𝐹𝑖)𝜎2

𝑢 (5.2)

5.2.1 Algorithm To Compute 𝐴

The matrix 𝐴 can be computed using either the

1. path coefficient method or
2. recursive method.

The second method is especially suitable for an implementation by a software
program. In what follows the recursive method to compute the components of
𝐴 is described now. Initially, animals in a pedigree are numbered from 1 to 𝑛
and ordered such that parents precede their progeny. The following rules are
then used to compute the components of 𝐴.

• If both parents 𝑠 and 𝑑 of animal 𝑖 are known then

– the diagonal element (𝐴)𝑖𝑖 corresponds to: (𝐴)𝑖𝑖 = 1+𝐹𝑖 = 1+ 1
2 (𝐴)𝑠𝑑

and
– the off-diagonal element (𝐴)𝑗𝑖 is computed as: (𝐴)𝑗𝑖 = 1

2 ((𝐴)𝑗𝑠 +
(𝐴)𝑗𝑑)

– because 𝐴 is symmetric (𝐴)𝑗𝑖 = (𝐴)𝑖𝑗

• If only one parent 𝑠 is known and assumed unrelated to the mate

– (𝐴)𝑖𝑖 = 1
– (𝐴)𝑖𝑗 = (𝐴)𝑗𝑖 = 1

2 ((𝐴)𝑗𝑠

• If both parents are unknown

– (𝐴)𝑖𝑖 = 1
– (𝐴)𝑖𝑗 = (𝐴)𝑗𝑖 = 0

5.2.2 Numeric Example

## as(<dtTMatrix>, "dtCMatrix") is deprecated since Matrix 1.5-0; do as(., "CsparseMatrix") instead

We are given the following pedigree and we want to compute the matrix 𝐴 using
the recursive method described in 5.2.1.

Table 5.1: Example Pedigree To Compute Additive Genetic Rela-
tionship Matrix

Calf Sire Dam
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3 1 2
4 1 NA
5 4 3
6 5 2

The first step of the computations of 𝐴 are the numbering and the ordering of
all the animals. This is already done in the pedigree shown in Table 5.1. The
components of 𝐴 are computed row-by-row starting with (𝐴)11.

(𝐴)11 = 1 + 𝐹1 = 1 + 0 = 1
(𝐴)12 = 0 = (𝐴)21

(𝐴)13 = 1
2((𝐴)11 + (𝐴)12) = 0.5 = (𝐴)31

(𝐴)14 = 1
2(𝐴)11 = 0.5 = (𝐴)14

(𝐴)15 = 1
2(𝐴)14 + (𝐴)13) = 0.5 = (𝐴)51

(𝐴)16 = 1
2(𝐴)15 + (𝐴)12) = 0.25

The same computations are also done for all the other components of the matrix
𝐴. The final result for the matrix looks as follows

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0.5 0.5 0.5 0.25
0 1 0.5 0 0.25 0.625

0.5 0.5 1 0.25 0.625 0.5625
0.5 0 0.25 1 0.625 0.3125
0.5 0.25 0.625 0.625 1.125 0.6875
0.25 0.625 0.5625 0.3125 0.6875 1.125

⎤
⎥
⎥
⎥
⎥
⎦

As a result, we can see from the components of the above shown matrix 𝐴 that
animals 1 and 2 are not related to each other. Furthermore from the diagonal
elements of 𝐴, it follows that animals 5 and 6 are inbred while animals 1 to 4
are not inbred.

5.3 The Inverse Numerator Relationship Matrix

The general form of Henderson’s mixed model equations as shown in (4.10)
depend on four matrices

1. Design matrix 𝑋 for the fixed effects
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2. Design matrix 𝑍 for the random effects
3. The inverse variance-covariance matrix 𝑅−1 for the residuals 𝑒 and
4. The inverse variance-covariance matrix 𝐺−1 for the random breeding val-

ues 𝑎.

When using the animal model as described in section @ref(#animalmodel),
we have seen in (5.1) that 𝐺 corresponds to the product of the numerator
relationship matrix 𝐴 and the genetic additive variance 𝜎2

𝑢. But the mixed
model equations depend on the inverse 𝐺−1 of 𝐺 which means

𝐺−1 = (𝐴 ∗ 𝜎2
𝑢)−1 = 𝐴−1 ∗ 1

𝜎2𝑢
(5.3)

From (5.3) we can see that in order to be able to set up the mixed model equa-
tions for an animal model, we need the inverse numerator relationship matrix
𝐴−1. Because in practical routine predictions of breeding values, we have some-
thing in the order of 10 million animals that we predict breeding values for.
Hence the matrix 𝐴 has 10 million rows and 10 million columns. A matrix of
that size cannot be inverted explicitly with commonly known methods such as
described under https://en.wikipedia.org/wiki/Invertible_matrix. This would
have been the end of the BLUP animal model, if not Henderson published in
[(Henderson, 1976)] a set of simple rules to directly construct the matrix 𝐴−1

without setting up the numerator relationship matrix.

5.4 Structure of 𝐴−1

When looking at a concrete example of an inverse of a numerator relationship
matrix as shown below, we can discover some important facts. Let us assume
the following pedigree.

Table 5.2: Pedigree Used To Compute Inverse Numerator Rela-
tionship Matrix

Calf Sire Dam
1 NA NA
2 NA NA
3 NA NA
4 1 2
5 3 2

The numerator relationship matrix 𝐴 for the pedigree shown in Table 5.2 is
shown in (5.4).

https://en.wikipedia.org/wiki/Invertible_matrix
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𝐴 =
⎡
⎢
⎢
⎢
⎣

1 0 0 0.5 0
0 1 0 0.5 0.5
0 0 1 0 0.5

0.5 0.5 0 1 0.25
0 0.5 0.5 0.25 1

⎤
⎥
⎥
⎥
⎦

(5.4)

The matrix 𝐴−1 shown below corresponds to the inverse of the matrix 𝐴 from
(5.4).

𝐴−1 =
⎡
⎢
⎢
⎢
⎣

1.5 0.5 0 −1 0
0.5 2 0.5 −1 −1
0 0.5 1.5 0 −1

−1 −1 0 2 0
0 −1 −1 0 2

⎤
⎥
⎥
⎥
⎦

From the above shown inverse 𝐴−1, we recognize that 𝐴−1 has a simpler struc-
ture than 𝐴 itself. The reason for this is that non-zero elements occur only
at matrix elements of 𝐴−1 corresponding to parents and progeny or to mates.
Furthermore off-diagonal elements corresponding to mates are positive and ele-
ments corresponding to parents and progeny are negative. These observations
were used by Henderson in (Henderson, 1976) to come up with the rules de-
scribed below.

5.5 Henderson’s Rule To Set Up 𝐴−1

We denote the row or column index corresponding to an animal of interest as 𝑖
and the row or column index belonging to the animals father as 𝑠 and the row or
column index corresponding to animal 𝑖’s mother as 𝑑. The rules differentiate
the following three cases

1. both parents of animal 𝑖 are known
2. only one parent of animal 𝑖 is known
3. both parents of animal 𝑖 are unknown

5.5.1 Both Parents Known

• add 2 to the diagonal-element (𝑖, 𝑖)
• add −1 to off-diagonal elements (𝑠, 𝑖), (𝑖, 𝑠), (𝑑, 𝑖) and (𝑖, 𝑑)
• add 1

2 to elements (𝑠, 𝑠), (𝑑, 𝑑), (𝑠, 𝑑), (𝑑, 𝑠)
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5.5.2 Only One Parent Known

We assume that sire 𝑠 is known

• add 4
3 to diagonal-element (𝑖, 𝑖)

• add − 2
3 to off-diagonal elements (𝑠, 𝑖), (𝑖, 𝑠)

• add 1
3 to element (𝑠, 𝑠)

5.5.3 Both Parents Unknown

• add 1 to diagonal-element (𝑖, 𝑖)

The application of Henderson’s rules to construct 𝐴−1 directly will be a problem
in one of the coming exercises. When applying the above described rules, it has
to be noted well that this simple version of the rules are only valid for a pedigree
without inbreeding. We will see in section @ref(#derivationofhendersonsrules)
how to extend the simple rules such that they can be used for a general pedigree
with inbreeding.

5.6 Derivation of Henderson’s Rules

Henderson’s rules can be related to the so-called LDL-decomposition of the nu-
merator relationship matrix 𝐴. The result of this decomposition consists of the
equivalence between matrix 𝐴 and the product of three matrices 𝐿, 𝐷 and 𝐿𝑇 .
The matrix 𝐿 is a lower triangular matrix and the matrix 𝐷 is a diagonal matrix.
The reason for why we are doing this decomposition of 𝐴 is that the matrices 𝐿
and 𝐷 can much easier be inverted than the matrix 𝐴. The LDL-decomposition
is a general procedure in linear algebra and it can be applied to any symmetric
and positive-definite matrix not only to numerator relationship matrices. But
when the LDL-decomposition is applied to a numerator relationship matrix, the
matrices 𝐿 and 𝐷 do also have a special genetic meaning. This meaning is
revealed in the following derivation.

5.6.1 Decomposition of True Breeding Value and its Vari-
ance

The true breeding value (𝑢𝑖) of animal 𝑖 can be decomposed into the true breed-
ing values of animal 𝑖’s parents 𝑠 and 𝑑 and the mendelian sampling term 𝑚𝑖

𝑢𝑖 = 1
2𝑢𝑠 + 1

2𝑢𝑑 + 𝑚𝑖 (5.5)
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Applying the decomposition shown in (5.10) for all animals in the pedigree and
combining the decompositions into a matrix-vector notation, we get

𝑢 = 𝑃 ⋅ 𝑢 + 𝑚 (5.6)

where
𝑢 vector of true breeding values for all animals
𝑃 matrix linking animals to their parents
𝑚 vector of mendelian sampling terms

Equation (5.6) can be interpreted as regression of the true breeding values onto
parental breeding values. In such a regression the random term 𝑚 is like a
residual term. The genetic meaning of 𝑚 corresponds to the deviation of 𝑢𝑖
from the full-sib average of the true breeding values within the nuclear family
with parents 𝑠 and 𝑑. The term 𝑚 is called mendelian sampling term. The
source of 𝑚 is the fact that during meiosis, parental alleles are randomly assigned
to each progeny. Bulmer [(Bulmer, 1971)] has shown that 𝑚𝑖 are independent
from true breeding values of parents 𝑠 and 𝑑. Using this result, we take the
variance on both sides of (5.10) leading to

𝑣𝑎𝑟(𝑢𝑖) = 𝑣𝑎𝑟(1
2𝑢𝑠 + 1

2𝑢𝑑 + 𝑚𝑖)

= 1
4𝑣𝑎𝑟(𝑢𝑠) + 1

4𝑣𝑎𝑟(𝑢𝑑) + 1
2𝑐𝑜𝑣(𝑢𝑠, 𝑢𝑑) + 𝑣𝑎𝑟(𝑚𝑖) (5.7)

From (5.1) together with the definition of the numerator relationship matrix 𝐴,
we know that

𝑣𝑎𝑟(𝑢𝑖) = (1 + 𝐹𝑖)𝜎2
𝑢

𝑣𝑎𝑟(𝑢𝑠) = (1 + 𝐹𝑠)𝜎2
𝑢

𝑣𝑎𝑟(𝑢𝑑) = (1 + 𝐹𝑑)𝜎2
𝑢

𝑐𝑜𝑣(𝑢𝑠, 𝑢𝑑) = (𝐴)𝑠𝑑𝜎2
𝑢 = 2𝐹𝑖𝜎2

𝑢 (5.8)

5.6.2 Variance of Mendelian Sampling Terms

Inserting the relations from (5.8) into (5.7) and solving for 𝑣𝑎𝑟(𝑚𝑖) gives the
following result



68 CHAPTER 5. GENETIC COVARIANCES BETWEEN ANIMALS

𝑣𝑎𝑟(𝑚𝑖) = 𝑣𝑎𝑟(𝑢𝑖) − 1
4𝑣𝑎𝑟(𝑢𝑠) − 1

4𝑣𝑎𝑟(𝑢𝑑) − 1
2𝑐𝑜𝑣(𝑢𝑠, 𝑢𝑑)

= (1 + 𝐹𝑖)𝜎2
𝑢 − 1

4(1 + 𝐹𝑠)𝜎2
𝑢 − 1

4(1 + 𝐹𝑑)𝜎2
𝑢 − 1

2 ∗ 2 ∗ 𝐹𝑖 ∗ 𝜎2
𝑢

= (1
2 − 1

4(𝐹𝑠 + 𝐹𝑑)) 𝜎2
𝑢 (5.9)

In case where only parent 𝑠 of animal 𝑖 is known the terms in (5.10) and (5.9)
change to

𝑢𝑖 = 1
2𝑢𝑠 + 1

2𝑢𝑑 + 𝑚𝑖 (5.10)

𝑢𝑖 = 1
2𝑢𝑠 + 𝑚𝑖

𝑣𝑎𝑟(𝑚𝑖) = (1 − 1
4(1 + 𝐹𝑠)) 𝜎2

𝑢

= (3
4 − 1

4𝐹𝑠) 𝜎2
𝑢 (5.11)

When both parents are unknown, we get

𝑢𝑖 = 𝑚𝑖
𝑣𝑎𝑟(𝑚𝑖) = 𝜎2

𝑢 (5.12)

5.6.3 Decomposition of 𝐴

The true breeding values 𝑢𝑠 of sire 𝑠 and 𝑢𝑑 of dam 𝑑 can be decomposed in a
similar way as shown for the true breeding value 𝑢𝑖 in (5.10).

𝑢𝑠 = 1
2𝑢𝑠𝑠 + 1

2𝑢𝑑𝑠 + 𝑚𝑠

𝑢𝑑 = 1
2𝑢𝑠𝑑 + 1

2𝑢𝑑𝑑 + 𝑚𝑑 (5.13)

where
𝑠𝑠 sire of 𝑠
𝑑𝑠 dam of 𝑠
𝑠𝑑 sire of 𝑑
𝑑𝑑 dam of 𝑑
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Using (5.13) together with (5.10) leads to the following expression for 𝑢𝑖

𝑢𝑖 = 1
2𝑢𝑠 + 1

2𝑢𝑑 + 𝑚𝑖

= 1
2(1

2𝑢𝑠𝑠 + 1
2𝑢𝑑𝑠 + 𝑚𝑠) + 1

2(1
2𝑢𝑠𝑑 + 1

2𝑢𝑑𝑑 + 𝑚𝑑) + 𝑚𝑖

= 1
4𝑢𝑠𝑠 + 1

4𝑢𝑑𝑠 + 1
4𝑢𝑠𝑑 + 1

4𝑢𝑑𝑑 + 1
2𝑚𝑠 + 1

2𝑚𝑑 + 𝑚𝑖

This type of decomposition can also be done for the grand-parents of animal
𝑖 and further back until we get to true breeding values of animals with un-
known parents. Animals of ancestor generations with unknown parents are
called founder population. The process of decomposing true breeding values
back through all generations of a pedigree is called recursive decomposition
of animal 𝑖’s true breeding value. Because we know from (5.12) that the de-
composition of true breeding values 𝑢𝑘 for an animal 𝑘 with unknown parents is
𝑢𝑘 = 𝑚𝑘, the result of the recursive decomposition of 𝑢𝑖 is a sum of mendelian
sampling terms linking the ancestors of 𝑖 back to the founder population.

Ordering all animals in a pedigree according to their age and writing the result of
the recursive decomposition of all true breeding values in matrix-vector notation
leads to

𝑢 = 𝐿 ⋅ 𝑚 (5.14)

The matrix 𝐿 is a lower triangular matrix. The row corresponding to animal 𝑖 is
the average of the rows in 𝐿 corresponding to parents 𝑠 and 𝑑 of 𝑖. The matrix
𝐿 contains the path of the gene flow from the base population to all animals
in the population. From equation (5.14), we are computing the variance of all
true breeding values which leads to

𝑣𝑎𝑟(𝑢) = 𝑣𝑎𝑟(𝐿 ⋅ 𝑚)
= 𝐿 ⋅ 𝑣𝑎𝑟(𝑚) ⋅ 𝐿𝑇

= 𝐿 ⋅ (𝐷𝜎2
𝑢) ⋅ 𝐿𝑇

= 𝐿 ⋅ 𝐷 ⋅ 𝐿𝑇 𝜎2
𝑢 = 𝐴𝜎2

𝑢

From (??), the LDL-decomposition of 𝐴 follows directly as 𝐴 = 𝐿𝐷𝐿𝑇 . The
single components 𝑚𝑖 are independent of each other. This also means that
𝑐𝑜𝑣(𝑚𝑖, 𝑚𝑗) = 0 for 𝑖 ≠ 𝑗. Hence the matrix 𝐷 is a diagonal matrix. In
section @ref(#variancemendeliansamplingterm) we have seen that 𝑣𝑎𝑟(𝑚𝑖)
always contain 𝜎2

𝑢 as a factor. Hence it is reasonable to express 𝑣𝑎𝑟(𝑚)
as a product of a diagonal matrix 𝐷 times the genetic additive variance
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𝜎2
𝑢. The diagonal elements of matrix 𝐷 are computed as shown in section

@ref(#variancemendeliansamplingterm).

The mixed model equations require the inverse numerator relationship matrix
𝐴−1. Thanks to the LDL-decomposition of 𝐴, we can compute 𝐴−1 as

𝐴−1 = (𝐿 ⋅ 𝐷 ⋅ 𝐿𝑇 )−1 = (𝐿𝑇 )−1 ⋅ 𝐷−1 ⋅ 𝐿−1 (5.15)

The inverse 𝐷−1 is easy to compute, because 𝐷 is a diagonal matrix. As a
consequence of that 𝐷−1 is also a diagonal matrix where the elements (𝐷−1)𝑖𝑖
correspond to the inverse of the elements of the original matrix 𝐷, i.e. (𝐷−1)𝑖𝑖 =
1/(𝐷)𝑖𝑖. The matrix 𝐿−1 is also a lower triangular matrix and can easily com-
puted based on the two relations for the vector 𝑚. Based on (5.6), we know

𝑚 = 𝑢 − 𝑃𝑢 = (𝐼 − 𝑃)𝑢 (5.16)

and from (5.14), we get

𝑚 = 𝐿−1𝑢 (5.17)

Setting both expressions for 𝑚 in (5.16) and (5.17) equal can be used to obtain
𝐿−1

𝑚 = (𝐼 − 𝑃)𝑢 = 𝐿−1𝑢 (5.18)

Therefore,

𝐿−1 = 𝐼 − 𝑃 (5.19)

5.6.4 General Version of Henderson’s Rule

Based on the decomposition of 𝐴−1 shown in (5.15), the general version of
Henderson’s rule where inbreeding of animals can be accounted for can be sum-
marized as

• Start with a matrix 𝐴−1 where all elements are set to 0.
• Let 𝑑𝑖 be the 𝑖-th diagonal element of 𝐷−1 for animal 𝑖, assuming 𝑖 has

parents 𝑠 and 𝑑.
• Then add the following contributions to 𝐴−1

– 𝑑𝑖 to the element (𝑖, 𝑖)
– −𝑑𝑖/2 to the elements (𝑠, 𝑖), (𝑖, 𝑠), (𝑑, 𝑖), (𝑖, 𝑑)
– 𝑑𝑖/4 to the elements (𝑠, 𝑠), (𝑠, 𝑑), (𝑑, 𝑠), (𝑑, 𝑑)
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The contributions to rows and columns corresponding to parents 𝑠 and 𝑑 are
only added, if they are known. Because the elements 𝑑𝑖 are dependent on the
inbreeding coefficients 𝐹𝑠 and 𝐹𝑑 of parents 𝑠 and 𝑑, we have to find an efficient
way to compute inbreeding coefficients for all animals in a population.

5.7 Computing Inbreeding Coefficients

Inbreeding coefficients can be computed using different methods. From all these
methods, we are just showing the one method which was described in [(Quaas,
1976)]. This method is based on the properties of a second decomposition of the
numerator relationship matrix 𝐴 which is called the cholesky decomposition.
The cholesky decomposition of a matrix 𝐴 corresponds to

𝐴 = 𝑅𝑅𝑇 (5.20)

where the matrix 𝑅 is a lower triangular matrix. At this point we have to
be clear about this. In practical routine evaluations, we will not explicitly
compute this decomposition, because we do not want to construct 𝐴 explicitly.
We are just using the properties of (5.20) to find an efficient way to compute
the diagonal elements (𝐴)𝑖𝑖 of 𝐴 without constructing the complete matrix 𝐴.
The diagonal elements (𝐴)𝑖𝑖 are important, because they contain the inbreeding
coefficients (𝐹𝑖), as (𝐴)𝑖𝑖 = 1 + 𝐹𝑖. Based on (5.20), (𝐴)𝑖𝑖 can be computed
from the components of 𝑅 as

(𝐴)𝑖𝑖 =
𝑖

∑
𝑗=1

(𝑅)2
𝑖𝑗 (5.21)

This can be shown with a small 3 × 3 matrix 𝐴

⎡⎢
⎣

(𝐴)11 (𝐴)12 (𝐴)13
(𝐴)21 (𝐴)22 (𝐴)23
(𝐴)31 (𝐴)32 (𝐴)33

⎤⎥
⎦

= ⎡⎢
⎣

(𝑅)11 0 0
(𝑅)21 (𝑅)22 0
(𝑅)31 (𝑅)32 (𝑅)33

⎤⎥
⎦

∗⎡⎢
⎣

(𝑅)11 (𝑅)21 (𝑅)31
0 (𝑅)22 (𝑅)32
0 0 (𝑅)33

⎤⎥
⎦

For the above shown example, the diagonal elements (𝐴)𝑖𝑖 are computed as

(𝐴)11 = (𝑅)2
11

(𝐴)22 = (𝑅)2
21 + (𝑅)2

22
(𝐴)33 = (𝑅)2

31 + (𝑅)2
32 + (𝑅)2

33

This shows that diagonal elements (𝐴)𝑖𝑖 can be computed using just all the
components of row 𝑖 in 𝑅 up to the diagonal. Next, we have to show how to
compute the components of 𝑅.
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5.7.1 Recursive Computation of 𝑅

We are setting the two decompositions of 𝐴 equal which leads to

𝐴 = 𝑅 ∗ 𝑅𝑇 = 𝐿 ∗ 𝐷 ∗ 𝐿𝑇 (5.22)

Let us write the matrix 𝑅 as a product of two matrices 𝐿 and 𝑆 where 𝐿
corresponds to the matrix from the LDL-decomposition and insert that product
into (5.22)

𝐴 = 𝑅 ∗ 𝑅𝑇 = 𝐿 ∗ 𝑆 ∗ (𝐿 ∗ 𝑆)𝑇 = 𝐿 ∗ 𝑆 ∗ 𝑆𝑇 ∗ 𝐿𝑇 = 𝐿 ∗ 𝐷 ∗ 𝐿𝑇 (5.23)

From (5.23), we conclude that 𝐷 = 𝑆 ⋅ 𝑆𝑇 where 𝑆 is also a diagonal matrix
with elements (𝑆)𝑖𝑖 = √(𝐷)𝑖𝑖. For our small example we get

⎡⎢
⎣

(𝑅)11 0 0
(𝑅)21 (𝑅)22 0
(𝑅)31 (𝑅)32 (𝑅)33

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
(𝐿)21 1 0
(𝐿)31 (𝐿)32 1

⎤⎥
⎦

∗ ⎡⎢
⎣

(𝑆)11 0 0
0 (𝑆)22 0
0 0 (𝑆)33

⎤⎥
⎦

(5.24)

From (5.24), we can see that the diagonal elements (𝑅)𝑖𝑖 are equal to (𝑆)𝑖𝑖.
Therefore

(𝑅)𝑖𝑖 = (𝑆)𝑖𝑖 = √(𝐷)𝑖𝑖 (5.25)

Earlier, we have seen that diagonal elements (𝐷)𝑖𝑖 of 𝐷 correspond to

(𝐷)𝑖𝑖 = 1
2 − 1

4 (𝐹𝑠 + 𝐹𝑑) = 1 − 0.25((𝐴)𝑠𝑠 + (𝐴)𝑑𝑑) (5.26)

and hence

(𝑅)𝑖𝑖 = √1 − 0.25((𝐴)𝑠𝑠 + (𝐴)𝑑𝑑) (5.27)

The components (𝐴)𝑠𝑠 and (𝐴)𝑑𝑑 correspond to diagonal elements of 𝐴 of par-
ents of 𝑠 and 𝑑 which were computed earlier.

The off-diagonal elements of 𝑅 are computed as

(𝑅)𝑖𝑗 = (𝐿)𝑖𝑗 ∗ (𝑆)𝑗𝑗 (5.28)

One property of the matrix 𝐿 is that any element (𝐿)𝑖𝑗 is equal to the average
of elements (𝐿)𝑠𝑗 and (𝐿)𝑑𝑗, if 𝑠 and 𝑑 are parents of animal 𝑖. Using this we
get
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(𝑅)𝑖𝑗 = (𝐿)𝑖𝑗 ∗ (𝑆)𝑗𝑗

= 1
2((𝐿)𝑠𝑗 + (𝐿)𝑑𝑗) ∗ (𝑆)𝑗𝑗

= 1
2((𝑅)𝑠𝑗 + (𝑅)𝑑𝑗) (5.29)

With that we have shown how to compute all elements of 𝑅 recursively. This
requires an ordering of all animals according to their age.
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Chapter 6

Variance and Inbreeding

Recalling from chapter 5 the variance (𝑣𝑎𝑟(𝑢𝑖)) of a breeding value 𝑢𝑖 of animal
𝑖 is given by

𝑣𝑎𝑟(𝑢𝑖) = (1 + 𝐹𝑖)𝜎2
𝑢 (6.1)

where 𝐹𝑖 is the inbreeding coefficient of animal 𝑖 and 𝜎2
𝑢 corresponds to the

additive genetic variance. At first sight this seams difficult to understand why
the inbreeding coefficient increases the variance of a breeding value. This chapter
aims at explaining the relationship between inbreeding and the genetic variance.
The material presented here is based on chapters 3 and 14 of (Falconer and
Mackay, 1996).

6.1 Inbreeding

Inbreeding means mating related individuals. The degree of relationship be-
tween individuals in a population depends on the size of the population. In a
population of bisexual organisms every individual has 2𝑡 ancestors when look-
ing 𝑡 generations back. Already for small 𝑡 the number of required individuals
in a population becomes quite large in order to provide separate unrelated an-
cestors. As a consequence of that any pair of individuals must be related to
some degree. Furthermore, pairs mating at random are expected to be more
related in smaller populations compared to when individuals mate at random
in large populations. Therefore properties of small populations can be treated
as consequences of inbreeding.
An important consequence of two individuals having a common ancestor is that
they may both carry replicates of one of the alleles present in the common
ancestor. If the two individuals mate, they may pass on these replicates to their
offspring.

75
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6.1.1 Inbreeding in Idealized Population

The coefficient of inbreeding is deduced assuming an idealized population. Start-
ing with the base population and its progeny forming generation 1 the devel-
opment of the inbreeding coefficient is computed. What is meant by the term
idealized population is shown in Figure 6.1.

Generation 0 Base Population (N = Infinity)

Gametes 2N 2N 2N2N2N

N N N N

2N 2N 2N2N2N

N N N N

Generation 1

Generation 2

Gametes

Figure 6.1: Subdivision of a single large population into a number of subpopu-
lations or lines

The computation of the inbreeding coefficient may be visualized by the following
situation. Let us assume a hermaphrodite marine organism, capable of self-
fertilization shedding eggs and sperm into the sea. There are 𝑁 individuals,
each shedding equal numbers of gametes which mate at random. At a given
locus, all the alleles in the base population have to be regarded as non-identical.
For that single locus, among the gametes shed by the base population there
are 2𝑁 different sorts in equal number. What is the probability that a pair of
gametes taken at random carry identical alleles? This probability corresponds
to the inbreeding coefficient (𝐹 ). Any gamete has a chance of 1/(2𝑁) to
mate with a gamete carrying the same allele. Hence the inbreeding coefficient
(𝐹1) in generation 1 corresponds to
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𝐹1 = 1
2𝑁 (6.2)

In generation 2 there are two ways in which identical homozygotes can arise,
first from new replication of alleles and second from previous replications. The
probability of newly replicated alleles coming together in a new zygote is again
1/(2𝑁). The remaining proportion 1 − (1/(2𝑁)) of zygotes carries alleles that
are not identical, but may have been identical from the previous generation.
The total probability of identical zygotes in generation 2 is

𝐹2 = 1
2𝑁 + (1 − 1

2𝑁 ) ∗ 𝐹1 (6.3)

The same argument leading to equation (6.3) applies to any subsequent gener-
ations. We can therefore write the more general statement

𝐹𝑡 = 1
2𝑁 + (1 − 1

2𝑁 ) ∗ 𝐹𝑡−1 (6.4)

Thus the inbreeding coefficient given in (6.4) consists of two parts: first an in-
crement (1/(2𝑁)) attributable to new inbreeding and a remainder that is caused
by inbreeding of previous generations. The increment (1/(2𝑁)) is assigned to a
new variable Δ𝐹 , so that

Δ𝐹 = 1
2𝑁 (6.5)

With that equation (6.4) can be re-written as

𝐹𝑡 = Δ𝐹 + (1 − Δ𝐹) ∗ 𝐹𝑡−1 (6.6)

Solving (6.6) for Δ𝐹 results in

Δ𝐹 = 𝐹𝑡 − 𝐹𝑡−1
1 − 𝐹𝑡−1

(6.7)

The measure of the rate of inbreeding given in equation (6.7) provides a
convenient way of generalising the concept of inbreeding beyond the simplifi-
cations of the idealized population. This generalization provides a means of
comparing inbreeding effects of different breeding systems. When expressing
inbreeding in terms of Δ𝐹 , equation (6.4) is valid for any breeding system and
is not restricted to the idealized population where Δ𝐹 is set to 1/(2𝑁). So far,
we have just related the inbreeding coefficient in one generation to the previous
generation. It remains to express the inbreeding coefficient in terms of a set of
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properties of the base population. This is simplified by defining the symbol 𝑃
as the complement of the inbreeding coefficient 𝐹 , hence

𝑃 = 1 − 𝐹 (6.8)

The quantity symbolized by 𝑃 is known as the panmicitic index. Using (6.8)
and inserting it into (6.7) leads to

𝑃𝑡
𝑃𝑡−1

= 1 − Δ𝐹 (6.9)

Hence the rate at which 𝑃 increases from one generation to the next is reduced
to a constant 1 − Δ𝐹 . Going back 𝑡 generations to the base population leads to

𝑃𝑡 = (1 − Δ𝐹)𝑡 ∗ 𝑃0 (6.10)

In the base population, we assumed no inbreeding, hence 𝐹0 = 0 and 𝑃0 = 1.
Using the result of (6.10) to compute 𝐹𝑡 leads to

𝐹𝑡 = 1 − (1 − Δ𝐹)𝑡 (6.11)

6.1.2 Variance of Gene Frequency

According the Hardy-Weinberg Equilibrium, gene frequencies are constant over
generations. But this is only true, if the base population is not divided into
subpopulations or lines. If the base population is split into separate lines as
shown in Figure 6.1, the gene frequencies in the single lines start to show vari-
ation. The amount of the variation is quantified by the variance of the gene
frequencies.

The variance (𝜎2
Δ𝑞) of the change of gene frequency in one generation is first of

all the variance of a binomial random variable and can be expressed in terms of
the rate of inbreeding, as shown below.

𝜎2
Δ𝑞 = 𝑝0𝑞0

2𝑁 = 𝑝0𝑞0Δ𝐹 (6.12)

An equivalent way of writing (6.13) is in terms of the inbreeding coefficient (𝐹1)
and the variance (𝜎2

𝑞) of gene frequencies after one generation. It follows that
the relationship is the same after any number of generations, so that after 𝑡
generations

𝜎2
𝑞 = 𝑝0𝑞0𝐹𝑡 (6.13)



6.1. INBREEDING 79

6.1.3 Genotype Frequencies

The genotype frequencies in the population as a whole (across all generations)
can be deduced from the knowledge of the variance of gene frequencies. If an
allele has frequency 𝑞 in a given line, homozygotes of that allele have frequency
𝑞2 in that line. The frequency of the homozygotes in the complete population
over all lines will be the mean value of 𝑞2 across all lines. The mean frequency of
homozygotes is written as ̄𝑞2. The value of ̄𝑞2 is obtained by the knowledge of the
variance of gene frequencies. In general the variance of a series of observations
is obtained by

From the general formula of obtaining the variance of a set of observations
corresponding to

𝜎2
𝑞 = ( ̄𝑞2) − ̄𝑞2 (6.14)

the mean frequency of homozygotes ̄𝑞2 is obtained as

̄𝑞2 = 𝜎2
𝑞 + ̄𝑞2 (6.15)

where ̄𝑞 is the mean gene frequency which is the same as the original gene fre-
quency 𝑞0. Thus in the complete population, the frequency of the homozygotes
of a particular allele increases and is always in excess of the original frequency
by an amount equal to the variance of the gene frequency among the lines. In
a two-allele system, the same applies to the other allele. The genotypic fre-
quencies for a locus with two alleles can then be summarized as shown in Table
6.1.

The genotype frequencies shown in Table 6.1 are no longer in Hardy-Weinberg
equilibrium. This change in genotype frequencies is the result of a mechanism
which is called the dispersive process. The dispersive process is active as soon
as the idealized base population is subdivided into single lines. The increase
of the frequency of the homozygous genotypes is the source of a phenomenon
called inbreeding depression. This depression refers to the reduced fitness of
individuals in populations with increasing levels of inbreeding.

Table 6.1: Genotype Frequencies in Population as a Whole

Genotype Frequency
𝐴1𝐴1 𝑝2

0 + 𝜎2
𝑞

𝐴1𝐴2 2𝑝0𝑞0 − 2𝜎2
𝑞

𝐴2𝐴2 𝑞2
0 + 𝜎2

𝑞
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Combining the formulas (6.13) and (6.15) and furthermore dropping the sub-
script 𝑡 in 𝐹𝑡 leads to

̄𝑞2 = ̄𝑞0
2 + 𝜎2

𝑞 = ̄𝑞0
2 + 𝑝0𝑞0𝐹 (6.16)

Based on (6.16) Table 6.1 with the genotype frequencies can be re-written as
shown in Table 6.2 where genotype frequencies are now expressed in terms of
the inbreeding coefficient 𝐹 .

6.2 Changes of Mean Value

So far, we have explained the consequences of inbreeding on the genotype fre-
quencies. In this section, we have a look at how inbreeding affects the mean
values of metric characters. The most important consequence of inbreeding is
the reduction of the mean phenotypic value of characters connected to repro-
duction and fitness. This phenomenon is known as inbreeding depression. In
saying that a certain trait shows inbreeding depression, we refer to the average
change of mean value in a number of lines. The separate lines are commonly
found to differ to a greater or lesser extent in the change they show, as in-
deed, we should expect in consequence of random drift of gene frequencies. The
change of mean value that we discuss now refers to changes of the mean value
of a number of lines derived from a common base population.

Consider a population, subdivided into a number of lines, with a coefficient
of inbreeding 𝐹 . Table 6.3 shows the genotype frequencies derived earlier, the
values of the single genotypes and the contribution to the population mean for
each genotype. The allele frequencies ̄𝑝 and ̄𝑞 correspond to the frequencies in
the whole population.

Summing over the last column in Table 6.3 results in the population mean for
the given trait.

Table 6.2: Genotype Frequencies for a bi-allelic locus, expressed in terms of
inbreeding coefficient 𝐹

Genotype Original Frequencies Changes due to inbreeding
𝐴1𝐴1 𝑝2

0 +𝑝0𝑞0𝐹
𝐴1𝐴2 2𝑝0𝑞0 −2𝑝0𝑞0𝐹
𝐴2𝐴2 𝑞2

0 +𝑝0𝑞0𝐹
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Table 6.3: Derivation of Inbreeding Depression

Genotype Frequency Value Product
𝐴1𝐴1 ̄𝑝2 + ̄𝑝 ̄𝑞𝐹 𝑎 ( ̄𝑝2 + ̄𝑝 ̄𝑞𝐹 )𝑎
𝐴1𝐴2 2 ̄𝑝 ̄𝑞 − 2 ̄𝑝 ̄𝑞𝐹 𝑑 (2 ̄𝑝 ̄𝑞 − 2 ̄𝑝 ̄𝑞𝐹 )𝑑
𝐴2𝐴2 ̄𝑞2 + ̄𝑝 ̄𝑞𝐹 −𝑎 −( ̄𝑞2 + ̄𝑝 ̄𝑞𝐹 )𝑎

𝑀𝐹 = ( ̄𝑝2 + ̄𝑝 ̄𝑞𝐹 )𝑎 + (2 ̄𝑝 ̄𝑞 − 2 ̄𝑝 ̄𝑞𝐹 )𝑑 − ( ̄𝑞2 + ̄𝑝 ̄𝑞𝐹 )𝑎
= 𝑎( ̄𝑝 − ̄𝑞) + 2𝑑 ̄𝑝 ̄𝑞 − 2𝑑 ̄𝑝 ̄𝑞𝐹
= 𝑎( ̄𝑝 − ̄𝑞) + 2𝑑 ̄𝑝 ̄𝑞(1 − 𝐹)
= 𝑀0 − 2𝑑 ̄𝑝 ̄𝑞𝐹 (6.17)

where 𝑀0 is the population mean before inbreeding. The change of mean re-
sulting from inbreeding is 2𝑑 ̄𝑝 ̄𝑞𝐹 .

6.3 Changes of Variance

The effect of inbreeding on the genetic variance becomes apparent when again
imagining the change of gene frequencies in different lines that emerge from a
homogeneous base population. Within the different lines, the gene frequencies
change to the dispersive process of random drift. This makes that over time
some allele frequencies will tend towards 0 and frequencies of other alleles will
tend towards 1. This tendency towards the extremes is different in the different
lines. As a result in the populations, the similarity within lines increases, but
between the lines the differences get bigger.

The subdivision of a population into lines introduces an additional component
of variance, the between-line variance component. This means that the total ge-
netic variance is re-distributed into the within-line component and the between
line component.

6.3.1 Redistribution of Genetic Variance

For reasons of simplicity, we are currently just looking at genetic loci with
purely additive effects. That means the dominance term 𝑑 for such additive
loci is 0. Strictly speaking, the results shown here apply only to traits with no
non-additive variance. But still, these results serve as a good approximation to
the effect of inbreeding on the genetic variance.
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Consider first a single locus. When there is not dominance the genotypic vari-
ance in the base population is given by

𝑉𝐺 = 𝑉𝐴 = 2𝑝0𝑞0𝑎2 (6.18)

The variance within one given line is 𝑉𝐺 = 2𝑝𝑞𝑎2, where 𝑝 and 𝑞 are the allele
frequencies in that given line. The mean genetic variance (𝑉 ̄𝐺) within the lines
is

𝑉 ̄𝐺 = 2( ̄𝑝𝑞)𝑎2 (6.19)

where ( ̄𝑝𝑞) is the mean value of 𝑝𝑞 over all lines. The term 2( ̄𝑝𝑞) is the overall
frequency of heterozygotes in the whole population, which, by Table 6.2, is equal
to 2𝑝0𝑞0(1 − 𝐹) where 𝐹 is the inbreeding coefficient. Therefore

𝑉 ̄𝐺 = 2( ̄𝑝𝑞)𝑎2

= 2𝑝0𝑞0(1 − 𝐹)
= 𝑉𝐺(1 − 𝐹) (6.20)

This remains true when summing the variances over all loci that affect a given
trait. The within-line variance corresponds to the original variance times (1−𝐹).
As 𝐹 approaches 1, the within-line variance tends toward 0.

Now consider the between-line variance. This is the variance of the true means
of lines, and would be estimated from an analysis of variance as the between-line
component. For a single locus with no dominance, the mean genotypic value of
a line with allele frequencies 𝑝 and 𝑞 is obtained as

𝑀 = 𝑎(𝑝 − 𝑞) = 𝑎(1 − 2𝑞) (6.21)

Now we have to find the variance of 𝑀 . The term 𝑎 is a constant, meaning that
it is the same in all the lines. Hence the only random term in 𝑀 is the allele
frequency 𝑞. Therefore

𝑣𝑎𝑟(𝑀) = 𝜎2
𝑀 = 4𝑎2𝜎2

𝑞 = 4𝑎2𝑝0𝑞0𝐹 (6.22)

Comparing the results of (6.22) and (6.20) shows that 𝜎2
𝑀 = 2𝐹𝑉𝐺. Putting the

two components together leads to the total genetic variance as shown in Table
6.4.

From the last row of Table 6.4, we can see that the total additive genetic variance
in a population with inbreeding corresponds to (1+𝐹)𝑉𝐺 which is exactly what
we wanted to show at the beginning of this chapter in equation (6.1).
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Table 6.4: Partitioning of the gentic additive variance in a population with lines
and a given inbreeding coefficient F

Source Variance
Between lines 2𝐹𝑉𝐺
Within lines (1 − 𝐹)𝑉𝐺
Total (1 + 𝐹)𝑉𝐺
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Chapter 7

Additional Aspects of
BLUP

This chapter introduces interesting additional aspects and special properties
of BLUP-based predicted breeding values. As we have seen in chapter 4, pre-
dicted breeding values which result from solving Henderson’s mixed model equa-
tions are predictions and these predictions always depend on some assumptions.
These assumptions are more or less valid depending on the dataset that is
analysed to produce the results. Furthermore, predicted breeding values are
a function of recorded data and such data is never perfect. Therefore, we need
a measure to quantify how good our predictions are. Such a measure is the
accurracy of the predicted breeding values.

One of the reasons, BLUP is nowadays the method of choice for predicting
breeding values is the fact that in the BLUP animal model all available in-
formation is used. This property can be shown by decomposing the predicted
breeding values from an animal model.

7.1 Accurracy

The accuracy for a BLUP-based animal model is no longer as easily derived as
with the prediction of breeding values based on own-performance or progeny
records. The animal model is a linear mixed effects model containing fixed and
random effects. Due to the properties of BLUP-based methods, the estimates
of the fixed effects and the prediction of the random effects have minimum error
variance. For the fixed effects, this error variance can be computed as

𝑣𝑎𝑟(𝛽 − ̂𝛽) = 𝑣𝑎𝑟( ̂𝛽)
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because fixed effects 𝛽 do not have any variance. For the random effects 𝑢 the
prediction error variance (PEV) does not simplify to the variance of the pre-
dicted effects 𝑢̂. Random effects by their nature do have a certain variance which
is part of the model specification. For a BLUP animal model the variance of the
random effects 𝑢 correspond to 𝑣𝑎𝑟(𝑢) = 𝐴 ∗ 𝜎2

𝑢. Any meaningful prediction 𝑢̂
of a random effect 𝑢 should also satisfy that the variance 𝑣𝑎𝑟(𝑢̂) predicts 𝑣𝑎𝑟(𝑢)
as closely as possible. Following this argument 𝑣𝑎𝑟(𝑢̂) cannot correspond to the
prediction error variance. The prediction error variance 𝑃𝐸𝑉 (𝑢̂) is computed
as

𝑃𝐸𝑉 (𝑢̂) = 𝑣𝑎𝑟(𝑢 − 𝑢̂) = 𝑣𝑎𝑟(𝑢) + 𝑣𝑎𝑟(𝑢̂) − 2 ∗ 𝑐𝑜𝑣(𝑢, 𝑢̂) = 𝑣𝑎𝑟(𝑢) − 𝑣𝑎𝑟(𝑢̂)

Henderson found that 𝑃𝐸𝑉 (𝑢̂) depends on the inverse of the coefficient matrix
in the mixed model equations.

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑍
𝑍𝑇 𝑅−1𝑋 𝑍𝑇 𝑅−1𝑍 + 𝐺−1 ]

−1
= [ 𝐶11 𝐶12

𝐶21 𝐶22 ]

We can state that

𝑃𝐸𝑉 (𝑢̂) = 𝑣𝑎𝑟(𝑢 − 𝑢̂) = 𝑣𝑎𝑟(𝑢) − 𝑣𝑎𝑟(𝑢̂) = 𝐶22 (7.1)

For a single animal 𝑖, the prediction error variance is 𝑃𝐸𝑉 (𝑢̂𝑖) = 𝐶22
𝑖𝑖 where 𝐶22

𝑖𝑖
is the 𝑖-th diagonal element in the matrix 𝐶22. The accuracy of 𝑢̂𝑖 is measured
by the squared correlation 𝑟2

𝑢,𝑢̂ between true and predicted breeding value. This
correlation is defined as

𝑟𝑢,𝑢̂ = 𝑐𝑜𝑣(𝑢𝑖, 𝑢̂𝑖)
√𝑣𝑎𝑟(𝑢𝑖) ∗ 𝑣𝑎𝑟(𝑢̂𝑖)

= 𝑣𝑎𝑟(𝑢̂𝑖)
√𝑣𝑎𝑟(𝑢𝑖) ∗ 𝑣𝑎𝑟(𝑢̂𝑖)

= √𝑣𝑎𝑟(𝑢̂𝑖)
𝑣𝑎𝑟(𝑢𝑖)

(7.2)

Combining equations (7.2) and (7.1) by solving both for 𝑣𝑎𝑟(𝑢̂𝑖) leads to

𝑣𝑎𝑟(𝑢̂𝑖) = 𝑣𝑎𝑟(𝑢𝑖) − 𝐶22
𝑖𝑖

𝑣𝑎𝑟(𝑢̂𝑖) = 𝑟2
𝑢,𝑢̂ ∗ 𝑣𝑎𝑟(𝑢𝑖)

𝑃𝐸𝑉 (𝑢̂𝑖) = 𝐶22
𝑖𝑖 = 𝑣𝑎𝑟(𝑢𝑖) − 𝑟2

𝑢,𝑢̂ ∗ 𝑣𝑎𝑟(𝑢𝑖) = (1 − 𝑟2
𝑢,𝑢̂) ∗ 𝑣𝑎𝑟(𝑢𝑖) (7.3)

Solving equation (7.3) for 𝑟2
𝑢,𝑢̂ which is the measure commonly used to assign a

certain level of accuracy to the predicted breeding value 𝑢̂𝑖 of a given animal 𝑖.

𝑟2
𝑢,𝑢̂ = 1 − 𝐶22

𝑖𝑖
𝑣𝑎𝑟(𝑢𝑖)

= 1 − 𝑃𝐸𝑉 (𝑢̂𝑖)
𝑣𝑎𝑟(𝑢𝑖)

(7.4)
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From equation (7.4) it becomes clear that the smaller 𝑃𝐸𝑉 (𝑢̂𝑖) is the higher the
accuracy 𝑟2

𝑢,𝑢̂ is. In the limit where 𝑃𝐸𝑉 (𝑢̂𝑖) tends to 0, the accuracy will tend
to 1. Based on the definition of 𝑃𝐸𝑉 (𝑢̂𝑖) in (7.1), it can be seen that 𝑃𝐸𝑉 (𝑢̂𝑖)
tends to 0, if 𝑣𝑎𝑟(𝑢̂𝑖) tends towards 𝑣𝑎𝑟(𝑢𝑖). That means the better the variance
𝑣𝑎𝑟(𝑢̂𝑖) of the predicted breeding values 𝑢̂𝑖 approximates the variance 𝑣𝑎𝑟(𝑢𝑖),
the smaller the value for 𝑃𝐸𝑉 (𝑢̂𝑖) and the higher the accuracy 𝑟2

𝑢,𝑢̂ of the
predicted breeding value 𝑢̂𝑖 will be. On the other hand, if 𝑣𝑎𝑟(𝑢̂𝑖) tends to 0
which means the prediction of 𝑣𝑎𝑟(𝑢𝑖) by 𝑣𝑎𝑟(𝑢̂𝑖) is very poor, 𝑃𝐸𝑉 (𝑢̂𝑖) tends
to 𝑣𝑎𝑟(𝑢𝑖) and the accuracy 𝑟2

𝑢,𝑢̂ tends to its minimum which is 0.

7.2 Confidence Intervals of Predicted Breeding
Values

The prediction error variance (PEV) determines the confidence interval of the
predicted breeding values. The square root of PEV corresponds to the standard
error of prediction (SEP).

𝑆𝐸𝑃(𝑢̂𝑖) = √𝑃𝐸𝑉 (𝑢̂𝑖) = √(1 − 𝑟2
𝑢,𝑢̂) ∗ 𝑣𝑎𝑟(𝑢𝑖)

Assuming the predicted breeding values 𝑢̂ follow a normal distribution and SEP
gives a measure of how much the predictions vary. For a given error probability
(𝛼) the confidence interval can be derived for probability of 1 − 𝛼. For a given
genetic standard deviation 𝜎𝑢 of 12, an error probability of 𝛼 = 0.05 and range
of accuracies, the width of the confidence intervals can be computed. The results
of these interval widths are shown in Table 7.1.
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Table 7.1: Widths of Confidence Intervals for Given Accuracies

Accurracy Interval Width
0.40 36.44
0.50 33.26
0.60 29.75
0.70 25.76
0.80 21.04
0.90 14.88
0.95 10.52
0.99 4.70

For a given predicted breeding value of 100 and an accuracy of 0.99 the con-
fidence interval is 100 ± 2.35. The same confidence interval is also shown in
Figure 7.1.

10097.65 102.35

α/2=0.025

Figure 7.1: Confidence Interval of Predicted Breeding Value

7.3 Relevance of Accurracies

The relevance that is assigned to the accuracies of the predicted breeding val-
ues depends on the livestock species and also on the individual breeder. The
assessment of the importance of the accuracies is not always easy and is differ-
ent whether we are looking at a single animal or whether we are looking at a
population.
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Predicted breeding values are unbiased, hence low accuracies are not considered
to be something “bad”. For single animals with predicted breeding values with
low accuracies, their predicted breeding value is expected to change more. But
the change of the predicted breeding values can be in both directions. Because
most breeders want to avoid negative changes, high accuracies are taken to be
important.

7.4 Response to Selection

The classical definition of accuracy as described above is the correlation 𝑟𝑢𝑖,𝑢̂𝑖
for a single animal 𝑖 across conceptual repeated sampling. This correlation
is a measure of the expected change of a predicted breeding value for animal
𝑖 with increasing information. Together with the link of this correlation to
the standard error of prediction (SEP) of the predicted breeding value 𝑢̂𝑖, the
quantity 𝑟𝑢𝑖,𝑢̂𝑖

can also be used to make statements about the potential risk
of producing offspring with undesired characteristics, when using animal 𝑖 as a
parent.

Accuracies are also important to predict genetic progress in a selection scheme.
This use applies only to large unrelated populations and was suitable for se-
lection programs that were based on selection index procedure for determining
parents of a future generation. However for a joint analysis of a complete popula-
tion, the relevant measure according to (Bijma, 2012) is the correlation between
true and predicted breeding values in the selection candidates. This correlation
is a property of a population and not of a single individual. More details on how
to estimate this “population accuracy” which should be used in the prediction
of selection response is described in (Legarra and Reverter, 2018).

In general, the following dependencies of a desired increase in population accu-
racy to other parameters in the breeding program can be established.

• generation intervals increase, because we need to wait for more progeny
to deliver a performance record

• more progeny per selection candidate must be tested, hence the number
of selection candidates and the selection intensities decrease

• costs for testing animals increase.

For livestock species such as cattle and horses, breeders usually assign too much
relevance to accuracies. In general selection response could be increased by low-
ering the generation interval and increasing the selection intensities and thereby
accepting lower levels of accuracies.
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7.5 Decomposition of Predicted Breeding Value

The mixed model equations as they are shown in (4.10) can be written in the
following abbreviated form

𝑀 ∗ 𝑠 = 𝑟
where

𝑀 coefficient matrix
𝑠 vector of unknowns
𝑟 vector of right-hand sides

The vector 𝑠 of unknowns in the mixed model equations consists of the vector ̂𝛽
of estimates of fixed effects and the vector 𝑢̂ of predicted breeding values, which
means

𝑠 = [ ̂𝛽
𝑢̂ ]

Because the vector ̂𝛽 has length 𝑝, the first 𝑝 components in 𝑠 correspond to
estimates of fixed effects. The remaining 𝑞 components of 𝑠 correspond to the
𝑞 predicted breeding values of vector 𝑢̂. Let us assume that we want to have a
closer look at how the predicted breeding value 𝑢̂𝑖 of the animal at position 𝑖
in the vector 𝑢̂. The component 𝑢̂𝑖 can be found on position 𝑝 + 𝑖 in the vector
𝑠. As a consequence of that the (𝑝 + 𝑖)-th line in 𝑀 contains the coefficients
that are relevant for the computation of the predicted breeding value 𝑢̂𝑖. These
coefficients determine what type of information is used to compute 𝑢̂𝑖. In what
follows, we describe how these coefficients are determined.
For the decomposition, we are using a simpler model which is shown in (7.5)

𝑦𝑖 = 𝜇 + 𝑢𝑖 + 𝑒𝑖 (7.5)

where 𝑦𝑖 Observation for animal 𝑖
𝑢𝑖 breeding value of animal 𝑖 with a variance of (1 + 𝐹𝑖)𝜎2

𝑢
𝑒𝑖 random residual effect with variance 𝜎2

𝑒
𝜇 single fixed effect

The above defined model is used to analyse a dataset in which all animals have an
observation. Animal 𝑖 has parents 𝑠 and 𝑑 and 𝑛 progeny 𝑘𝑗 (with 𝑗 = 1, … , 𝑛)
and 𝑛 mates 𝑙𝑗 (with 𝑗 = 1, … , 𝑛). From this it follows that progeny 𝑘𝑗 has
parents 𝑖 and 𝑙𝑗.
For this simple model (7.5) the mixed model equations also have a reduced
complexity. Because, we only have one fixed effect which is present in all obser-
vations the matrix 𝑋 has just one column of all ones. Because all animals have
an observation, the matrix 𝑍 corresponds to the identity matrix.



7.5. DECOMPOSITION OF PREDICTED BREEDING VALUE 91

Taking into account Henderson’s rule for setting up 𝐴−1 directly, the equation
for observation 𝑦𝑖 which corresponds to the (𝑖 + 1)-th1 equation in our mixed
effects model.

𝑦𝑖 = ̂𝜇 + [1 + 𝛼𝛿(𝑖) + 𝛼
4

𝑛
∑
𝑗=1

𝛿(𝑘𝑗)] 𝑢̂𝑖 − 𝛼
2 𝛿(𝑖)𝑢̂𝑠 − 𝛼

2 𝛿(𝑖)𝑢̂𝑑

− 𝛼
2

𝑛
∑
𝑗=1

𝛿(𝑘𝑗)𝑢̂𝑘𝑗
+ 𝛼

4
𝑛

∑
𝑗=1

𝛿(𝑘𝑗)𝑢̂𝑙𝑗
(7.6)

where 𝛼 ration between variance components 𝜎2
𝑒/𝜎2

𝑢
𝛿(𝑗) contribution for animal 𝑗 to 𝐴−1

Solving (7.6) for 𝑢̂𝑖 leads to

𝑢̂𝑖 = 1
1 + 𝛼𝛿(𝑖) + 𝛼

4 ∑𝑛
𝑗=1 𝛿(𝑘𝑗) [𝑦𝑖 − ̂𝜇 + 𝛼

2 {𝛿(𝑖)(𝑢̂𝑠 + 𝑢̂𝑑) +
𝑛

∑
𝑗=1

𝛿(𝑘𝑗)(𝑢̂𝑘𝑗
− 1

2𝑢̂𝑙𝑗
)}]

(7.7)

From the decomposition in (7.7), we can see that the predicted breeding value
𝑢̂𝑖 consists of the following components

• Predicted breeding values 𝑢̂𝑠 and 𝑢̂𝑑 of parents 𝑠 and 𝑑 of 𝑖
• Own performance 𝑦𝑖 of 𝑖
• Predicted breeding values 𝑢̂𝑘𝑗

and 𝑢̂𝑙𝑗
of progeny 𝑘𝑗 and mates 𝑙𝑗

An explicit example of a decomposition in (7.7) will be used as an exercise
problem.

1For the general case, this would be (𝑝 + 𝑖)-th equation. In the simple example, we have
𝑝 = 1.
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Chapter 8

Genomic Selection

Similarly to BLUP, the principles of Genomic Selection (GS) was proposed
quite a while before its introduction in 2008. The first ideas of GS were presented
by (Meuwissen et al., 2001b). They showed that information from genotypes
of very many loci evenly spread over the complete genome can successfully
be used for the purposes of livestock breeding. Because the information of the
genotypes is spread over the complete genome it is often referred to as genomic
information and from the use of this information for selection purposes the
term of genomic selection was invented. The early results on GS were not
considered until the paper by (Schaeffer, 2006) showed that in a cattle breeding
program the introduction of GS could lead to savings in about 90% of the total
costs, provided that the accuracies computed by (Meuwissen et al., 2001b) can
really be achieved. After the publication of (Schaeffer, 2006) many livestock
breeding organisation started to introduce procedures of GS.

8.1 Background

The single location in the genome that are considered in GS are called markers.
When looking at the complete set of markers consisting the genomic information
in a population, the so-called Single Nucleotide Polymorphisms (SNP) have
been shown to be the most useful types of markers. These SNP correspond to
differences of single bases at a given position in the genome. Based on empirical
analyses of very many SNP-loci, almost all SNP just take two different states.
Furthermore it is important that these SNPs are more or less evenly spread over
the complete genome. Some SNPs are in coding regions and some my be placed
in regions of unknown functionality. Figure 8.1 shows the distribution of SNP
over the genome.
The loci that are relevant for a quantitative traits are called Quantitative
Trait Loci (QTL). Any given SNP-Marker can only be informative for a given
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Figure 8.1: Distribution of SNP-Loci Across A Genome

QTL, if a certain linkage disequilibrium between the QTL and the marker lo-
cus exists. The idea behind this linkage disequilibrium is that a certain positive
QTL-allele evolved in a certain genetic neighborhood of a number of SNP loci.
As a result of that the positive QTL-allele is very often inherited with the same
SNP-allele. Over the generations, recombination between the QTL and the
neighboring SNP-loci can happen and thereby weaken the association between
the positive QTL-allele and the given SNP-allele. This recombination effect is
smaller when the QTL and the SNP-loci are physically closer together on the
chromosome. The non-random association between QTL and SNP-markers is
called linkage disequilibrium.

The marker locus is called 𝑀 and the QTL is called 𝑄, then the LD can be
measured by

𝐷 = 𝑝(𝑀1𝑄1) ∗ 𝑝(𝑀2𝑄2) − 𝑝(𝑀1𝑄2) ∗ 𝑝(𝑀2𝑄1) (8.1)

where 𝑝(𝑀𝑥𝑄𝑦) corresponds to the frequency of the combination of marker allele
𝑀𝑥 and QTL allele 𝑄𝑦. Very often the LD measure shown in (8.1) is re-scaled
to the interval between 0 and 1 which leads to
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𝑟2 = 𝐷2

𝑝(𝑀1) ∗ 𝑝(𝑀2) ∗ 𝑝(𝑄1) ∗ 𝑝(𝑄2) (8.2)

In (8.2) 𝑟2 describes the proportion of the variance at the QTL which is ex-
plained by the marker 𝑀 . Hence the LD must be high such that the marker
can explain a large part of the variance at the QTL. For the length of most
livestock species, about 50′000 SNP markers are required to get a sufficient
coverage of the complete genome.
Nowadays the term genomic selection is often used ambiguously. What most
people mean when they are talking about GS should better be called genomic
prediction of breeding values. This prediction can be done in different ways
which are listed below

• Two-step procedure: Effects of SNPs are predicted using single locus mod-
els in a reference population which corresponds of mainly male breed-
ing animals with transformed predicted traditional BLUP-breeding values
with an reliability above a certain threshold. Alternatively, it is also pos-
sible to use statistics of daughter yields as observations for the prediction
of marker effects. Predictions of genomic breeding values for all animals
in the population with genomic information are computed by summing up
all previously estimated SNP-effects. This procedure is currently applied
in the Swiss dairy cattle populations.

• Single-step procedures try to predict genomic breeding values and tradi-
tional breeding values in a single evaluation.

8.2 A Linear Model To Predict Genomic Breed-
ing Values

A linear model to estimate SNP-effects based on the data from the reference
population in the two-step procedure can be defined as follows

𝑦 = 𝑋𝛽 + 𝑀𝑔 + 𝑒 (8.3)

where 𝑚 number of SNP markers
𝑦 vector of observations
𝛽 vector of fixed effects
𝑋 design matrix linking fixed effects to observations
𝑔 random genetic effect of SNP-genotypes
𝑀 design matrix linking SNP-genotype effects to observations
𝑒 vector of random residuals

The observations 𝑦 used in (8.3) are in most evaluations not phenotypes but tra-
ditionally predicted breeding values with an reliability above a certain threshold.
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As a consequence of that the variance-covariance matrix (𝑅) of the residuals 𝑒
is not just an identity matrix (𝐼) times a residual variance component (𝜎2

𝑒) but
𝑅 is a diagonal matrix with elements (𝑅)𝑖𝑖 = 1

𝐵𝑚
−1 where 𝐵𝑚 is the reliability

of the traditionally predicted breeding value from an animal from the reference
population, corrected for the parental contributions. In effect, 𝐵𝑚 corresponds
to the reliability of the mendelian sampling term.

The mixed-model equations resulting from models given in (8.3) have the fol-
lowing structure

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑀
𝑀𝑇 𝑅−1𝑋 𝑀𝑇 𝑅−1𝑀 + 𝐼 ∗ 𝜆 ] [ ̂𝛽

̂𝑔 ] = [ 𝑋𝑇 𝑅−1𝑦
𝑀𝑇 𝑅−1𝑦 ] (8.4)

where

𝜆 = 𝜎2
𝑒

𝜎2𝑎

𝑚
∑
𝑖=1

2 ∗ 𝑝𝑖 ∗ (1 − 𝑝𝑖) (8.5)

In (8.5) 𝜎2
𝑎 is the total genetic variance and 𝑝𝑖 is the frequency of the SNP-allele

that is associated with the positive QTL-allele.

The solutions for ̂𝑔 from (8.4) correspond to the SNP-genotype effects. The
predicted breeding value ̂𝑎 for any selection candidate with genomic information
is then computed as

̂𝑎 =
𝑚

∑
𝑖=1

𝑀𝑖 ̂𝑔𝑖 (8.6)

where 𝑀𝑖 corresponds to the vector of SNP-genotypes of the selection candidate.

8.2.1 Matrix 𝑀

The elements in matrix 𝑀 can be encoded in different ways. The results from
the genotyping laboratory sends a code representing the nucleotide that can be
found at a given position. For the use in the linear model we have to use a
different encoding. Let us assume that at a given SNP-position, the bases 𝐺 or
𝐶 are observed and 𝐺 corresponds to the allele with the positive effect on our
trait of interest. Based on the two observed alleles, the possible genotypes are
𝐺𝐺, 𝐺𝐶 or 𝐶𝐶. One possible code for this SNP in the matrix 𝑀 might be the
number of 𝐺-Alleles which corresponds to 2, 1 and 0. Alternatively, it is also
possible to use the codes 1, 0 and −1 instead which corresponds to the factors
with which 𝑎 is multiplied to get the genotypic values in the single locus model.

Multiplying the matrix 𝑀 with its transpose 𝑀𝑇 results in a 𝑛×𝑛 square matrix
𝑀𝑀𝑇 . On the diagonal of this matrix we get counts of how many alleles in
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each individual have a positive effect. The off-diagonal elements count how
many individual share the same alleles across all SNP-positions. In contrast to
the additive genetic relationship matrix 𝐴, the counts here are based on identity
by state and not on identity by descent.

The problem with matrix 𝑀𝑀𝑇 is its dependence on the number SNP-markers.
Therefore the matrix 𝑀𝑀𝑇 is proportional to the relationship 𝐴 but it does
not correspond to 𝐴 directly. As a solution to that problem (VanRaden, 2008)
proposed to re-scale such that allele frequencies on a given locus are expressed
as to times the deviation from 0.5. This re-scaling is done with an 𝑛×𝑚 matrix
𝑃 where each of the 𝑚 columns corresponds to a SNP-Locus. Elements in
column 𝑖 of matrix 𝑃 have all the same value corresponding to 2𝑝𝑖 − 0.5 where
𝑝𝑖 corresponds to the frequency of the SNP-allele associated to the positive
QTL-allele at locus 𝑖.
The difference between matrices 𝑀 and 𝑃 is assigned to a new matrix 𝑍

𝑍 = 𝑀 − 𝑃

Finally the matrix 𝑍𝑍𝑇 must be scaled with the sum of 2𝑝𝑖(1 − 𝑝𝑖) over all
SNP-loci to get to the genomic relationship matrix 𝐺.

𝐺 = 𝑍𝑍𝑇

∑𝑚
𝑖=1 2𝑝𝑖(1 − 𝑝𝑖)

(8.7)

The matrix 𝐺 has similar properties as the numerator relationship matrix 𝐴.
The genomic inbreeding coefficient 𝐹𝑗 is defined as 𝐹𝑗 = (𝐺)𝑗𝑗 −1. The genomic
relationship 𝑎𝑖𝑗 between two individuals 𝑖 and 𝑗 corresponds to the element in
matrix 𝐺 divided by the square root of the diagonal elements

𝑎𝑖𝑗 = 𝐺𝑖𝑗
√𝐺𝑖𝑖𝐺𝑗𝑗

8.3 GBLUP

The term GBLUP stands for genomic BLUP and is the most widely used single-
step procedure. In GBLUP genomic breed values are directly predicted without
the prediction of marker effects. This can be done by including the genomic
breeding values 𝑢 which corresponds to the sum of all SNP-allele effects directly
as a random effect in the model.

𝑦 = 𝑋𝛽 + 𝑊𝑢 + 𝑒 (8.8)
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where 𝑊 is the design matrix linking genomic breeding values to observations.
The mixed model equations are the defined as

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑊
𝑊 𝑇 𝑅−1𝑋 𝑊 𝑇 𝑅−1𝑊 + 𝐺−1 ∗ 𝜆 ] [ ̂𝛽

𝑢̂ ] = [ 𝑋𝑇 𝑅−1𝑦
𝑊 𝑇 𝑅−1𝑦 ] (8.9)

where 𝐺 is defined as in (8.7) and 𝜆 is the same as in equation (8.5). Several
authors have shown that both procedures (two-step and single step) are equiv-
alent. From (8.8) we can see that the GBLUP model looks very similar to the
animal model, except that the covariances between random effects in the ani-
mal model are based on the numerator relationship matrix and in GBLUP they
are modeled via the genomic relationship matrix 𝐺. This means in the animal
model the covariance between random breeding values is based on the concept
of common ancestry and identity by descent. This is replaced in GBLUP by the
concept of sharing the same alleles based on identity by state which is assumed
to be the cause of the covariance between random genomic breeding values.

The predicted genomic breeding values 𝑢̂ coming out of (8.9) are referred to as
direct genomic breeding values (DGV).

8.4 Practical Problems

The model equations (8.8) look very straight-forward, but the practical imple-
mentation can be quite complicated. The reason for these problems is the fact
that compared to the total size of a population only a small fraction of all
animals are genotyped and hence contribute the the genomic evaluation. On
the other hand DGV do not contain all information that occur in conventional
breeding values.

Because all non-genotyped offsprings of parents are ignored by GBLUP, this loss
of information is even more dramatic. For the two step-procedure as long as the
reference population has a reasonable size and is not too heterogeneous, this is
not a problem, we can still come up with reasonable estimates of SNP-effects.
Due to the in-balanced availability of genotypic information, a procedure to
combine DGV with traditional predicted breeding values was adopted. This
procedure starts with predicting DGV and combining them with traditionally
predicted breeding values from parents which are termed as parent averages
(PA). This procedure of combining predicted breeding values from different
sources is called blending. The problem with blending one has to be aware of
is that there is a covariance between DGV and PA which must be accounted
for.

A further problem is that there are different techniques to generate genotyping
results. The different results also have different densities which means that they
give different numbers of SNP-loci per genome. The different techniques also
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vary in price which is the reason that genotyping results from different technolo-
gies must be combined. Combining genotyping results with different densities
of SNP-markers per genome is done with a process that is called imputing.
This basically comes done to inferring missing SNP-genotypes on marker panels
with less density based on results from denser marker panels.

8.5 How Does GBLUP Work

The genomic relationship matrix 𝐺 allows to predict genomic breeding values
for animals with SNP-Genotypes without any observation in the dataset. This
fact is the basis of the large benefit of genomic selection. As soon as a young
animal is born, its SNP genotypes can be determined and a genomic breeding
value can be predicted. This genomic breeding value is much more accurate
then the traditional breeding value based only on ancestral information.

The BVM model given in (??) is a mixed linear effects model. The solution
for the unknown parameters can be obtained by solving the mixed model equa-
tions shown in (8.10). In this form the Inverse 𝐺−1 of 𝐺 and the vector ̂𝑔 of
predicted genotypic breeding values are split into one part corresponding to the
animals with observations and a second part for the animals without phenotypic
information.

⎡⎢
⎣

𝑋𝑇 𝑋 𝑋𝑇 𝑍 0
𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝐺(11) 𝐺(12)

0 𝐺(21) 𝐺(22)
⎤⎥
⎦

⎡⎢
⎣

̂𝑏
̂𝑔1
̂𝑔2

⎤⎥
⎦

= ⎡⎢
⎣

𝑋𝑇 𝑦
𝑍𝑇 𝑦

0
⎤⎥
⎦

(8.10)

The matrix 𝐺(11) denotes the part of 𝐺−1 corresponding to the animals with
phenotypic observations. Similarly, 𝐺(22) stands for the part of the animals
without genotypic observations. The matrices 𝐺(12) and 𝐺(21) are the parts of
𝐺−1 which link the two groups of animals. The same partitioning holds for
the vector of predicted breeding values. The vector ̂𝑔1 contains the predicted
breeding values for the animals with observations and the vector ̂𝑔2 contains the
predicted breeding values of all animals without phenotypic observations.

Based on the last line of (8.10) the predicted breeding values ̂𝑔2 of all animals
without phenotypic observations can be computed from the predicted breeding
values ̂𝑔1 from the animals with observations.

̂𝑔2 = − (𝐺22)−1 𝐺21 ̂𝑔1 (8.11)

Equation (8.11) is referred to as genomic regression of predicted breeding values
of animals without observation on the predicted genomic breeding values of
animals with observations.
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Appendix A

Introduction To Linear
Algebra

Linear Algebra is a large area. A short overview can be seen in a video (https:
//youtu.be/kjBOesZCoqc) by (3Blue1Brown, 2016a). In this course we only
need the following three topics from the large field of linear algebra.

1. Vectors
2. Matrices and
3. Systems of linear equations.

A.1 Glimpse Ahead

The central topic of this course is the prediction of breeding values. Most
approaches to predict breeding values require the solution of large systems of
linear equations. These systems of equations are written down using vectors
and matrices. Hence the three mentioned topics are important to understand
at a level that they can be used as tools for the prediction of breeding values.

A.2 Vectors

The material of this section is largely based on the video tutorial (https://youtu.
be/fNk_zzaMoSs) from (3Blue1Brown, 2016b). We try to give a summarized
transcript of the video. The vector is the fundamental building block of linear
algebra. There are three different but related concepts about what vectors are.
We call them
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https://youtu.be/kjBOesZCoqc
https://youtu.be/kjBOesZCoqc
https://youtu.be/fNk_zzaMoSs
https://youtu.be/fNk_zzaMoSs
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1. the physics perspective
2. the computer science perspective and
3. the mathematics perspective.

The mathematics perspective tries to provide a very general concept, saying
that anything can be a vector as long as, one can add two vectors or a vector
can be multiplied by a factor and the result of both operations is a vector again.
For what we want to use vectors for in the context of livestock breeding and
genomics, the mathematics perspective is not so useful, hence we ignore it from
now on.

A.2.1 Physics Perspective

The physics perspective is that vectors are arrows with a certain length and a
direction they are pointing to. As long as length and direction are the same,
the arrows can be moved around and they are still the same vector. Different
arrows with the same length and the same direction are called representatives
of the same vector. Vectors that are in a flat plane are called two-dimensional.
Those who are sitting in the same Euclidean space that we are all living in, are
called three-dimensional.

Vector w

Vector v
Representative 1
of vector w

Representative 2
of vector w
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A.2.2 Computer Science Perspective

In the computer science perspective vectors are ordered list of numbers. Later
we will see that vectors can also contain more general objects like strings. As
an example, we assume that we are analyzing carcasses and the only thing
we know about a carcass is its slaughter-weight (SW) and its price (P). The
different carcasses can then be represented by a pair of numbers the first being
the slaughter-weight and the second being the price. It is important to note
here, that the order of the number matters. In terms of vectors, here each
carcass is represented by a two-dimensional vector.

Carcass 1 Carcass 2 Carcass 3

Weight

Price

290 kg 265 kg 320 kg

1943 Fr 1829 Fr 1984 Fr

A.2.3 Geometric Context

Some basic properties of vectors are introduced using the geometric context,
that a vector is an arrow located in a certain coordinate system with its tail
sitting at the origin of the coordinate system. This is a little bit different from
the physics perspective (see A.2.1) where the arrow can sit anywhere in space.
In linear algebra it is almost always the case that vectors are rooted at the
origin. Once we understand the properties of vectors in the context of arrows
in space, we can then translate these properties to the list-of-numbers point of
view (see A.2.2) considering the coordinates of the vectors.
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A.2.4 Coordinate System

It is important to introduce the coordinate system, because this will be the basis
of the correspondence between the two perspectives of linear algebra. For the
moment, we focus on two dimensions. The horizontal line is called the x-axis and
the vertical line is called the y-axis. The place where the two lines intersect is
called the origin. An arbitrary length is chosen to represent 1. The coordinates
of a vector is a pair of numbers that give instructions for how to get from the
tail of that vector at the origin to its tip. The first number tells you how far to
walk along the x-axis (positive numbers indicating rightward motion, negative
numbers indicating leftward motion) and the second number tell you how far to
walk parallel to the y-axis (positive numbers indicating upward motion, negative
numbers indicating downward motion).

x-axis

y-axis

origin

vx

vyv

1

Figure A.1: Coordinate System

A.2.5 Vector Operations

The vectors by themselves can be pretty interesting objects, but they get really
useful when considering some operations that we can perform on them. Here
we consider three basic operations.
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1. addition
2. multiplication by a scalar number and
3. dot product

A.2.5.1 Addition

Let us assume, we have two vectors 𝑣 and 𝑤. To add these two vectors, move
the second one such that its tail sits at the tip of the first one. Then draw a
new vector from the tail of the first one to the tip of the second one. The new
vector corresponds to the sum of the two vectors (Figure A.2).

x-axis

y-axis

v

w

v+w

Figure A.2: Addition of two vectors

Numerically, vector addition corresponds to summing up each of the coordinates
individually. Hence if we have two vectors 𝑣 and 𝑤 with their coordinates given
as

𝑣 = [ 𝑣𝑥
𝑣𝑦

] , 𝑤 = [ 𝑤𝑥
𝑤𝑦

]

then the sum 𝑣 + 𝑤 has coordinates
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𝑣 + 𝑤 = [ 𝑣𝑥 + 𝑤𝑥
𝑣𝑦 + 𝑤𝑦

]

A.2.5.2 Multiplication by a Scalar Number

This operation is best understood by looking at a few examples. If we take the
number 2 and multiply it by a certain vector 𝑣, this means that we stretch out
the vector 𝑣 such that it is 2 times as long as the original vector. Multiplication
of a vector with positive numbers does not change the direction of the vector.
Multiplying a vector 𝑣 with a negative number like −0.5 then the direction gets
flipped around and then squished by 0.5.

v

2v

-0.5v

Figure A.3: Scalar Multiplication of Vectors

The operation of multiplying a vector by a given number, like 2 or −0.5 is also
called scaling and that is the reason why in linear algebra the numbers like 2 and
−0.5 are called scalar numbers or just scalars. Numerically, stretching a vector
by a given number like 2, corresponds to multiplying each of the coordinate
components by that factor 2. For a vector 𝑣 with coordinate components 𝑣𝑥
and 𝑣𝑦, the vector 2𝑣 has coordinates 2𝑣𝑥 and 2𝑣𝑦
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𝑣 = [ 𝑣𝑥
𝑣𝑦

]  , 2𝑣 = [ 2𝑣𝑥
2𝑣𝑦

]

A.2.5.3 Dot Product

The dot product is explained in a different video that can be seen on https:
//youtu.be/LyGKycYT2v0. Numerically, if you have two vectors of the same
dimension, meaning two lists of numbers of the same length, e.g. 𝑣 and 𝑤 then
their dot product 𝑣 ⋅ 𝑤 can be computed by pairing up all of the coordinates,
multiplying these pairs together and adding the result. So the vectors

𝑣 = [ 𝑣𝑥
𝑣𝑦

]   and 𝑤 = [ 𝑤𝑥
𝑤𝑦

]

their dot product 𝑣 ⋅ 𝑤 then is computed as

𝑣 ⋅ 𝑤 = 𝑣𝑥 ∗ 𝑤𝑥 + 𝑣𝑦 ∗ 𝑤𝑦

A.3 Matrices

The introduction to the topic of matrices is available from https://youtu.be/
kYB8IZa5AuE and https://youtu.be/XkY2DOUCWMU. An 𝑚 × 𝑛 matrix is
a table-like object of 𝑚 ∗ 𝑛 numbers arranged in 𝑚 rows and 𝑛 columns. In
general the 𝑚 × 𝑛 matrix 𝐴 has the following structure.

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

The 𝑚 ∗ 𝑛 numbers inside of the square brackets are called elements of the
matrix. The element of matrix 𝐴 that is in row 𝑖 and in column 𝑗 is called 𝑎𝑖𝑗
or (𝐴)𝑖𝑗. As an example

𝐴 = [ 2 3 1
5 1 2 ]

is a 2 × 3 matrix. In the first row the second element corresponds to (𝐴)12 =
𝑎12 = 3. An 𝑛×𝑛 matrix (i.e. a matrix with equal numbers of rows and columns)
is called a quadratic matrix. Two matrices 𝐴 and 𝐵 are called equal, if they
have the same number of rows and columns and if the corresponding elements
are the same, i.e.

https://youtu.be/LyGKycYT2v0
https://youtu.be/LyGKycYT2v0
https://youtu.be/kYB8IZa5AuE
https://youtu.be/kYB8IZa5AuE
https://youtu.be/XkY2DOUCWMU
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(𝐴)𝑖𝑗 = (𝐵)𝑖𝑗 for all i and j

A.3.1 Special Matrices

The following matrices are special and are used in special cases.

• Nullmatrix: The 𝑚 × 𝑛 matrix 0 is called Nullmatrix, if each element is
equal to zero.

• Upper Triangular Matrix: The square matrix 𝑅 is called upper trian-
gular matrix, if (𝑅)𝑖𝑗 = 0 for 𝑖 > 𝑗.

• Lower Triangular Matrix: The square matrix 𝐿 is called lower trian-
gular matrix, if (𝐿)𝑖𝑗 = 0 for 𝑖 < 𝑗.

• Diagonal Matrix: The square matrix 𝐷 is called diagonal matrix, if
(𝐷)𝑖𝑗 = 0 for 𝑖 ≠ 𝑗.

• Identity Matrix: The diagonal matrix 𝐼 is called identity matrix, if all
diagonal elements (𝐼)𝑖𝑖 = 1.

• Column Vector: A 𝑚 × 1 matrix is often called a column vector.
• Row Vector: A 1 × 𝑛 matrix is is often called a row vector.

A.3.2 Matrix Operations

The following operations with matrices are defined.

A.3.2.1 Addition

For two 𝑚 × 𝑛 matrices 𝐴 and 𝐵, their sum 𝐴 + 𝐵 is again a 𝑚 × 𝑛 matrix with
each element corresponding to the sum of the corresponding elements from 𝐴
and 𝐵. Hence, we can write

(𝐴 + 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗 + (𝐵)𝑖𝑗 for all i and j

A.3.2.2 Multiplication with a Number

A 𝑚 × 𝑛 matrix A is multiplied by a number 𝛼 by multiplying every element
(𝐴)𝑖𝑗 of 𝐴 with 𝛼. The result 𝛼 ∗ 𝐴 is computed as (𝛼 ∗ 𝐴)𝑖𝑗 = 𝛼 ∗ (𝐴)𝑖𝑗 for all
𝑖 and 𝑗.
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A.3.2.3 Multiplication of two Matrices

Given a 𝑚 × 𝑛 matrix 𝐴 and a 𝑛 × 𝑝 matrix 𝐵, their matrix product 𝐴𝐵 is a
𝑚 × 𝑝 matrix with

(𝐴𝐵)𝑖𝑗 =
𝑛

∑
𝑘=1

(𝐴)𝑖𝑘 ∗ (𝐵)𝑘𝑗 = (𝐴)𝑖1 ∗ (𝐵)1𝑗 + (𝐴)𝑖2 ∗ (𝐵)2𝑗 + … + (𝐴)𝑖𝑛 ∗ (𝐵)𝑛𝑗

A.3.2.4 Laws of Matrix Operations

• Commutativity: For two 𝑚 × 𝑛 matrices 𝐴 and 𝐵 the addition is com-
mutative, i.e. 𝐴 + 𝐵 = 𝐵 + 𝐴.

• Associativity of addition: For 𝑚×𝑛 matrices 𝐴, 𝐵 and 𝐶, the addition
is associative, i.e., 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶

• Associativity of multiplication: For a 𝑚 × 𝑛 matrix 𝐴, a 𝑛 × 𝑝 matrix
𝐵 and a 𝑝 × 𝑞 matrix 𝐶, the multiplication is associative, i.e., 𝐴(𝐵𝐶) =
(𝐴𝐵)𝐶

• Distributivity: For 𝑚 × 𝑛 matrices 𝐴 and 𝐵 and 𝑛 × 𝑝 matrices 𝐶 and
𝐷, the distributive law holds, i.e., (𝐴+ 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 and 𝐴(𝐶 + 𝐷) =
𝐴𝐶 + 𝐴𝐷

A.3.2.5 Matrix Transpose

Given a 𝑚 × 𝑛 matrix 𝐴, then the 𝑛 × 𝑚 matrix 𝐴𝑇 is called its transpose,
if (𝐴𝑇 )𝑖𝑗 = 𝐴𝑗𝑖. The matrix 𝐴 is called symmetric, if 𝐴 = 𝐴𝑇 . For every
matrix 𝐴 the transpose of the transpose is the matrix itself, i.e., (𝐴𝑇 )𝑇 = 𝐴.
For any 𝑚 × 𝑛 matrices 𝐴 and 𝐵, the transpose (𝐴 + 𝐵)𝑇 of their sum (𝐴 + 𝐵)
is computed as

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

For every 𝑚 × 𝑛 matrix 𝐴 and every 𝑛 × 𝑝 matrix 𝐵, it holds that

(𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇

A.3.2.6 Inverse of a Matrix

In this section, we are looking at square matrices. The inverse 𝑋 of a square
matrix 𝐴 is defined as the square matrix that satisfies the condition 𝐴𝑋 = 𝐼 .
If the inverse matrix 𝑋 exists, then the matrix 𝐴 is called invertable. If 𝑋 does
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not exist, 𝐴 is called singular. If the inverse of a matrix 𝐴 exists, it is uniquely
determined and we call it 𝐴−1.

Let us assume two invertable 𝑛 × 𝑛 matrices 𝐴 and 𝐵, then the following equa-
tions hold

1. 𝐴−1𝐴 = 𝐼
2. 𝐴−1 is invertable and (𝐴−1)−1 = 𝐴
3. 𝐼 is invertable and 𝐼−1 = 𝐼
4. 𝐴𝐵 is invertable and (𝐴𝐵)−1 = 𝐵−1𝐴−1

5. 𝐴𝑇 is invertable and (𝐴𝑇 )−1 = (𝐴−1)𝑇

For every square matrix 𝐴, the following statements are equivalent.

1. 𝐴 is invertable
2. The system of equations 𝐴𝑥 = 𝑏 is solvable for every 𝑏.
3. The system of equations 𝐴𝑥 = 0 has only the trivial solution 𝑥 = 0.

A.3.2.7 Orthogonal Matrices

A square matrix 𝐴 is called orthogonal, if the condition 𝐴𝑇 𝐴 = 𝐼 holds. For
two orthogonal matrices 𝐴 and 𝐵, the following statements hold.

1. 𝐴 is invertable and 𝐴−1 = 𝐴𝑇

2. 𝐴−1 is orthogonal
3. 𝐴𝐵 is orthogonal
4. 𝐼 is orthogonal

A.4 Systems Of Equations

Systems of linear equations are introduced based on (Nipp and Stoffer, 2002)
and (Searle, 1971). Solving systems of linear equations is one of the fundamental
tasks of linear algebra. We start with a general example of a system of linear
equations which is given as

𝑥1 + 2𝑥2 = 5
2𝑥1 + 3𝑥2 = 8 (A.1)

In (A.1) we are given a system of linear equations with two equations and two
unknowns 𝑥1 and 𝑥2. The aim is to find numeric values for 𝑥1 and 𝑥2 such that
both equations are satisfied. Inserting the values 𝑥1 = 1 and 𝑥2 = 2 into the
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above equations show that they are both satisfied. Hence the set 𝐿 = {𝑥1 =
1, 𝑥2 = 2} consisting of the values for 𝑥1 and 𝑥2 that satisfy both equations is
called a solution or a solution set for the above shown equations.

In general, a linear system of equations consists of 𝑚 equations and 𝑛 unknowns.
In the example (A.1), 𝑚 = 2 and 𝑛 = 2.

The example in (A.2) does not have any solutions.

𝑥1 + 𝑥2 = 4
2𝑥1 + 2𝑥2 = 5 (A.2)

This can be seen, that if the first equation in (A.2) is multiplied by 2, we get
2𝑥1 + 2𝑥2 = 8 which contradicts the second equation shown in (A.2).

A system with 𝑚 = 2 equations and 𝑛 = 3 unknowns in shown in (A.3).

𝑥1 − 𝑥2 + 𝑥3 = 2
2𝑥1 + 𝑥2 − 𝑥3 = 4 (A.3)

There are infinitely many solutions consisting of 𝑥1 = 2, 𝑥2 = 𝛼 and 𝑥3 = 𝛼 for
any real number 𝛼.

The examples in (A.1), (A.2) and (A.3) already show all possible cases that
may occur when solving linear systems of equations. The question is how to
determine the set of all solutions of a system of linear equations.

A.4.1 Matrix-Vector Notation

So far, we have written systems of linear equations explicitly in the sense that
every equation was written on one line. For small systems this is not a problem.
But when the number of equations (𝑚) and the number of unknowns (𝑛) get
very large, the explicit notation is no longer feasible. Hence, we need a notation
that can also be used for large systems of equations. The so-called matrix-vector
notation provides an efficient way to write down large systems of equations very
efficiently.

We return to the example given by (A.1) and we define the matrix 𝐴 to be

𝐴 = [ 1 2
2 3 ] ,

the vector 𝑥 to be
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𝑥 = [ 𝑥1
𝑥2

] ,

and the vector 𝑦 to be

𝑦 = [ 5
8 ] ,

With these definitions, we can write the system of equations given in (A.1) using
matrix-vector notation as

𝐴 ⋅ 𝑥 = 𝑦 (A.4)

A.5 Solving Systems of Linear Equations

If matrix 𝐴 in (A.4) is not singular, i.e. the inverse Matrix 𝐴−1 of 𝐴 does exist,
the solution 𝑥 to (A.4) can be written as 𝑥 = 𝐴−1𝑦. This result is obtained
by pre-multiplying both sides of (A.4) with 𝐴−1 and since a matrix times its
inverse results in the identity matrix 𝐼 , the solution is obtained as

𝐴 ⋅ 𝑥 = 𝑦
𝐴−1 ⋅ 𝐴 ⋅ 𝑥 = 𝐴−1 ⋅ 𝑦

𝐼 ⋅ 𝑥 = 𝐴−1 ⋅ 𝑦
𝑥 = 𝐴−1 ⋅ 𝑦 (A.5)

For systems of equations with a singular matrix 𝐴, solutions can be found, if
the equations are consistent. The linear equations 𝐴𝑥 = 𝑦 are consistent,
if any linear relationship existing among the rows of 𝐴 also exist among the
corresponding elements of 𝑦. As a simple example, the equations

[ 1 2
3 6 ] [ 𝑥1

𝑥2
] = [ 7

21 ]

are consistent. In the matrix on the left the second row corresponds to three
times the first row and in the vector on the right, the second element is also
three times the first element. In contrast the equations

[ 1 2
3 6 ] [ 𝑥1

𝑥2
] = [ 7

24 ]
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are not consistent. From this example, we can already see that non-consistent
equations do not have any solutions. But consistent equations 𝐴𝑥 = 𝑦 have a
solution which can be written as 𝑥 = 𝐺𝑦 if and only if, 𝐴𝐺𝐴 = 𝐴 which means
that 𝐺 is a so-called generalized inverse of 𝐴. The matrix 𝐺 is often written as
𝐴−. The proof of this statement is given on page 9 of (Searle, 1971).
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Appendix B

Introduction To R and
RStudio

According to the website https://www.r-project.org/, R (R Core Team, 2018)
is a free software environment for statistical computing and graphics. Because
R is free and it is available for the most commonly used operating systems such
as Windows, MacOsX and Linux, it has become very popular in statistics and
in data science. Furthermore, R can be extended with user-contributed code
and documentation (called R-packages) in a very easy and standardised way.
The number of available R-packages is growing rapidly and has reached

RStudio (https://www.rstudio.com/) is a private company that among a large
number of different products distributes the RStudio Integrated Development
Environment (IDE) for R. A great number of different resources about R and
RStudio IDE is available. Some of them are listed here.

• R: From the R website, there is an introduction to R available at: https:
//cran.r-project.org/doc/manuals/r-release/R-intro.html.

• RStudio IDE: The link https://resources.rstudio.com/ points to a series
of webinars introducing R and RStudio.
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