Problem 1: Breeding Values For a Monogenic Trait
We assume that the absorption of cholesterol is determined by a
certain enzyme. The level of enzyme production is determined by a single
bi-allelic locus \(E\). The genotype
frequencies and the genotypic values for the two dairy cattle
populations Original Braunvieh
and Brown Swiss
are given in the following table.
\(f(E_1E_1)\) |
0.0625 |
0.01 |
\(f(E_1E_2)\) |
0.3750 |
0.18 |
\(f(E_2E_2)\) |
0.5625 |
0.90 |
\(a\) |
15.0000 |
29.00 |
\(d\) |
3.0000 |
0.00 |
Hints
- Assume that allele \(E_1\) is the
allele with the positive effect on the enzyme level
- Assume that the Hardy-Weinberg Equilibrium holds in both
populations
Your Task
Compute the breeding values for all three genotypes in both
populations.
Your Solution
- Use the formula shown in the class or in the course notes to compute
the breeding values for the three genotypes
- Adapt the parameters that change for the two populations.
Problem 2: Quantitative Genetics
In a population the following numbers of genotypes were counted for a
given genetic locus called \(A\).
\(A_1A_1\) |
24 |
\(A_1A_2\) |
53 |
\(A_2A_2\) |
23 |
- Compute the genotype frequencies
- Compute the allele frequencies
- Compute the population mean \(\mu\)
under the following assumptions
- the difference between the genotypic values of the homozygous
genotypes is \(20\) and
- the genotypic value of the heterozygous genotype is \(2\).
Your Solution
The requested quantities can be computed according to material
presented during the lecture.
Latest Changes: 2022-10-06 17:37:10 (pvr)
LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gTm90ZWJvb2sgMwphdXRob3I6IFBldGVyIHZvbiBSb2hyCmRhdGU6ICcyMDIyLTEwLTA2JwpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKcGFyYW1zOgogIGRvY3R5cGU6CiAgICBsYWJlbDogRG9jdW1lbnQgVHlwZQogICAgdmFsdWU6IHNvbHV0aW9uCiAgICBjaG9pY2VzOgogICAgLSBleGVyY2lzZQogICAgLSBzb2x1dGlvbgogICAgLSBub3RlYm9vawogIGlzb25saW5lOgogICAgbGFiZWw6IE9ubGluZSAoeS9uKQogICAgdmFsdWU6IHRydWUKICAgIGNob2ljZXM6CiAgICAtIHRydWUKICAgIC0gZmFsc2UKLS0tCgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKCiMjIFByb2JsZW0gMTogQnJlZWRpbmcgVmFsdWVzIEZvciBhIE1vbm9nZW5pYyBUcmFpdApXZSBhc3N1bWUgdGhhdCB0aGUgYWJzb3JwdGlvbiBvZiBjaG9sZXN0ZXJvbCBpcyBkZXRlcm1pbmVkIGJ5IGEgY2VydGFpbiBlbnp5bWUuIFRoZSBsZXZlbCBvZiBlbnp5bWUgcHJvZHVjdGlvbiBpcyBkZXRlcm1pbmVkIGJ5IGEgc2luZ2xlIGJpLWFsbGVsaWMgbG9jdXMgJEUkLiBUaGUgZ2Vub3R5cGUgZnJlcXVlbmNpZXMgYW5kIHRoZSBnZW5vdHlwaWMgdmFsdWVzIGZvciB0aGUgdHdvIGRhaXJ5IGNhdHRsZSBwb3B1bGF0aW9ucyBgT3JpZ2luYWwgQnJhdW52aWVoYCBhbmQgYEJyb3duIFN3aXNzYCBhcmUgZ2l2ZW4gaW4gdGhlIGZvbGxvd2luZyB0YWJsZS4KCmBgYHtyIHRhYmxlLWdlbm8tZnJlcS12YWx1ZSwgZWNobz1GQUxTRX0KbF9tYWYgPC0gbGlzdChvYiA9IDAuMjUsIGJzID0gMC4xKQpsX2EgPC0gbGlzdChvYiA9IDE1LCBicyA9IDI5KQpsX2QgPC0gbGlzdChvYiA9IDMsIGJzID0gMCkKdGJsX2dlbm9fZnJlcV92YWx1ZSA8LSB0aWJibGU6OnRpYmJsZShWYXJpYWJsZSA9IGMoCiAgIiRmKEVfMUVfMSkkIiwKICAiJGYoRV8xRV8yKSQiLAogICIkZihFXzJFXzIpJCIsCiAgIiRhJCIsCiAgIiRkJCIpLAogIGBPcmlnaW5hbCBCcmF1bnZpZWhgID0gYygKICAgIGxfbWFmJG9iXjIsIAogICAgMipsX21hZiRvYiooMS1sX21hZiRvYiksCiAgICAoMS1sX21hZiRvYileMiwKICAgIGxfYSRvYiwKICAgIGxfZCRvYgogICksCiAgYEJyb3duIFN3aXNzYCA9IGMoCiAgICBsX21hZiRic14yLAogICAgMipsX21hZiRicyAqICgxLWxfbWFmJGJzKSwKICAgICgxLWxfbWFmJGJzKSwKICAgIGxfYSRicywKICAgIGxfZCRicwogICkpCmtuaXRyOjprYWJsZSh0YmxfZ2Vub19mcmVxX3ZhbHVlLCBib29rdGFicyA9IFRSVUUsIGxvbmd0YWJsZSA9IFRSVUUsIGVzY2FwZSA9IEZBTFNFKQpgYGAKCgojIyMgSGludHMKKiBBc3N1bWUgdGhhdCBhbGxlbGUgJEVfMSQgaXMgdGhlIGFsbGVsZSB3aXRoIHRoZSBwb3NpdGl2ZSBlZmZlY3Qgb24gdGhlIGVuenltZSBsZXZlbAoqIEFzc3VtZSB0aGF0IHRoZSBIYXJkeS1XZWluYmVyZyBFcXVpbGlicml1bSBob2xkcyBpbiBib3RoIHBvcHVsYXRpb25zCgoKIyMjIFlvdXIgVGFzawpDb21wdXRlIHRoZSBicmVlZGluZyB2YWx1ZXMgZm9yIGFsbCB0aHJlZSBnZW5vdHlwZXMgaW4gYm90aCBwb3B1bGF0aW9ucy4gCgoKIyMjIFlvdXIgU29sdXRpb24KCiogVXNlIHRoZSBmb3JtdWxhIHNob3duIGluIHRoZSBjbGFzcyBvciBpbiB0aGUgY291cnNlIG5vdGVzIHRvIGNvbXB1dGUgdGhlIGJyZWVkaW5nIHZhbHVlcyBmb3IgdGhlIHRocmVlIGdlbm90eXBlcwoqIEFkYXB0IHRoZSBwYXJhbWV0ZXJzIHRoYXQgY2hhbmdlIGZvciB0aGUgdHdvIHBvcHVsYXRpb25zLgoKCgoKCiMjIFByb2JsZW0gMjogUXVhbnRpdGF0aXZlIEdlbmV0aWNzCkluIGEgcG9wdWxhdGlvbiB0aGUgZm9sbG93aW5nIG51bWJlcnMgb2YgZ2Vub3R5cGVzIHdlcmUgY291bnRlZCBmb3IgYSBnaXZlbiBnZW5ldGljIGxvY3VzIGNhbGxlZCAkQSQuIAoKYGBge3IgR2Vub3R5cGVGcmVxcywgZWNobz1GQUxTRX0KZGZHZW5vdHlwZUZyZXEgPC0gdGliYmxlOjp0aWJibGUoR2Vub3R5cGVzID0gYygiJEFfMUFfMSQiLCAiJEFfMUFfMiQiLCAiJEFfMkFfMiQiKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBOdW1iZXJzICAgPSBjKDI0LCA1MywgMjMpKQprbml0cjo6a2FibGUoZGZHZW5vdHlwZUZyZXEsIGJvb2t0YWJzID0gVFJVRSwgbG9uZ3RhYmxlID0gVFJVRSwgZXNjYXBlID0gRkFMU0UpCmBgYAoKYSkgQ29tcHV0ZSB0aGUgZ2Vub3R5cGUgZnJlcXVlbmNpZXMKYikgQ29tcHV0ZSB0aGUgYWxsZWxlIGZyZXF1ZW5jaWVzCmMpIENvbXB1dGUgdGhlIHBvcHVsYXRpb24gbWVhbiAkXG11JCB1bmRlciB0aGUgZm9sbG93aW5nIGFzc3VtcHRpb25zCgoqIHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIGdlbm90eXBpYyB2YWx1ZXMgb2YgdGhlIGhvbW96eWdvdXMgZ2Vub3R5cGVzIGlzICQyMCQgYW5kCiogdGhlIGdlbm90eXBpYyB2YWx1ZSBvZiB0aGUgaGV0ZXJvenlnb3VzIGdlbm90eXBlIGlzICQyJC4KCgojIyMgWW91ciBTb2x1dGlvbgpUaGUgcmVxdWVzdGVkIHF1YW50aXRpZXMgY2FuIGJlIGNvbXB1dGVkIGFjY29yZGluZyB0byBtYXRlcmlhbCBwcmVzZW50ZWQgZHVyaW5nIHRoZSBsZWN0dXJlLgoKCgogCgoKYGBge3IsIGVjaG89RkFMU0UsIHJlc3VsdHM9J2FzaXMnfQpjYXQoJ1xuLS0tXG5cbiBfTGF0ZXN0IENoYW5nZXM6ICcsIGZvcm1hdChTeXMudGltZSgpLCAnJVktJW0tJWQgJUg6JU06JVMnKSwgJyAoJywgU3lzLmluZm8oKVsndXNlciddLCAnKV9cbicsIHNlcCA9ICcnKQpgYGAKIAo=