Problem 2: Breeding Value Prediction Based on Repeated
Observations
Elsa has observations for her birth weight (\(52\) kg) and some more repeated measures
for her weight. We assume the heritability to be \(h^2 = 0.45\). The population mean for the
repeated observations of the weight is \(170\) kg. The repeatability of the weight
measurements is \(t = 0.65\).
The following tables contains all observed values for the weight.
1 |
52 |
2 |
82 |
3 |
112 |
4 |
141 |
5 |
171 |
6 |
201 |
7 |
231 |
8 |
260 |
9 |
290 |
10 |
320 |
- Predict the breeding value for Elsa based on the repeated weight
records.
- What is the reliability for the predicted breeding value from
2a)?
- Compare the reliability from 2b) with the reliability that would
result from a prediction of breeding values based on own
performance.
Your Solution
As in Problem 1, you can use the assigned variables. The variables
have the following meaning
- nr_measure: number of measurements of the weight
- h2: heritability
- rep: repeatability
- mean_weight: mean of the weights
- mu2: population mean
Problem 3: Predict Breeding Values Based on Progeny Records
A few years later Elsa was the dam of 5 offspring. Each of the
offspring has a record for weaning weight. Predict the breeding value of
Elsa for weaning weight based on the offpsring records listed in the
following table.
1 |
320 |
2 |
319 |
3 |
320 |
4 |
320 |
5 |
321 |
The mean and the heritability can be taken the same as in Problems 1
and 2 resulting in
\(h^2 = 0.45\) and \(\mu = 250\)
Your Solution
This problem can be solved analogously to the previous problems, just
taking into account that the information now comes from offspring.
Latest Changes: 2022-10-25 06:14:07 (pvr)
LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gTm90ZWJvb2sgNQphdXRob3I6IFBldGVyIHZvbiBSb2hyCmRhdGU6ICcyMDIyLTEwLTIxJwpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKcGFyYW1zOgogIGRvY3R5cGU6CiAgICBsYWJlbDogRG9jdW1lbnQgVHlwZQogICAgdmFsdWU6IHNvbHV0aW9uCiAgICBjaG9pY2VzOgogICAgLSBleGVyY2lzZQogICAgLSBzb2x1dGlvbgogICAgLSBub3RlYm9vawogIGlzb25saW5lOgogICAgbGFiZWw6IE9ubGluZSAoeS9uKQogICAgdmFsdWU6IHRydWUKICAgIGNob2ljZXM6CiAgICAtIHRydWUKICAgIC0gZmFsc2UKLS0tCgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKCiMjIFByb2JsZW0gMTogT3duIFBlcmZvcm1hbmNlCmBgYHtyIHByb2IxLXNldHVwLCBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpzZXQuc2VlZCg0MjA2KQpuX25yX2FuaW1hbCA8LSAxMgpuX3dlaWdodF9tZWFuIDwtIDI4MwpuX3dlaWdodF9zZCA8LSAzCnZlY193ZWlnaHQgPC0gcm91bmQocm5vcm0obl9ucl9hbmltYWwsIG1lYW4gPSBuX3dlaWdodF9tZWFuLCBuX3dlaWdodF9zZCksIGRpZ2l0cyA9IDApCnRibF93ZWlnaHQgPC0gdGliYmxlOjp0aWJibGUoQW5pbWFsID0gYygxOm5fbnJfYW5pbWFsKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXZWlnaHQgPSB2ZWNfd2VpZ2h0KQpuX3dlaWdodF9oMiA8LSAwLjIwMjUKYGBgCgpHaXZlbiBpcyB0aGUgZGF0YXNldCB3aXRoIHdlaWdodCBvYnNlcnZhdGlvbnMgZm9yIGByIG5fbnJfYW5pbWFsYCBhbmltYWxzLiBUaGUgaGVyaXRhYmlsaXR5ICgkaF4yJCkgZm9yIHRoZSB0cmFpdCBpcyBgciBuX3dlaWdodF9oMmAuIFRoZSBwb3B1bGF0aW9uIG1lYW4gJFxtdSQgY2FuIGFzc3VtZWQgdG8gYmUgdGhlIG1lYW4gb2YgdGhlIHdlaWdodHMgaW4gdGhlIHRhYmxlIGJlbG93LiAKCmAKYGBge3IgdGJsLXdlaWdodCwgZWNobz1GQUxTRX0Ka25pdHI6OmthYmxlKHRibF93ZWlnaHQsIGJvb2t0YWJzID0gVFJVRSwgbG9uZ3RhYmxlID0gVFJVRSwgZXNjYXBlID0gRkFMU0UpCmBgYAoKIyMjIFlvdXIgVGFza3MKCiogQ29tcHV0ZSB0aGUgYnJlZWRpbmcgdmFsdWVzIGZvciBhbGwgYW5pbWFscyBnaXZlbiBpbiB0aGUgdGFibGUgYWJvdmUKKiBDb21wdXRlIHRoZSBhY2N1cmFjaWVzIG9mIHRoZSBicmVlZGluZyB2YWx1ZXMgb2YgYWxsIGFuaW1hbHMgc2hvd24gaW4gdGhlIHRhYmxlIGFib3ZlLgoKIyMjIFlvdXIgU29sdXRpb24KCiogUmVhZCB0aGUgZGF0YSBzdWNoIHRoYXQgeW91IGhhdmUgdGhlIHBoZW5vdHlwZXMgYXZhaWxhYmxlIGFzIGEgdmVjdG9yIG9yIGEgdGliYmxlCiogVXNlIHRoZSBmb3JtdWxhIGZvciBlc3RpbWF0aW5nIGJyZWVkaW5nIHZhbHVlcyBiYXNlZCBvbiBvd24tcGVyZm9ybWFuY2UgcmVjb3JkcwoqIFNob3cgdGhlIHJlc3VsdCBmb3IgZWFjaCBhbmltYWwKCgoKCgojIyBQcm9ibGVtIDI6IEJyZWVkaW5nIFZhbHVlIFByZWRpY3Rpb24gQmFzZWQgb24gUmVwZWF0ZWQgT2JzZXJ2YXRpb25zCgpgYGB7ciBTZXR1cEV4MiwgZWNobz1GQUxTRX0KZ2ViX2dldyA8LSA1MgptdTIgPC0gMTcwCnJlcCA8LSAwLjY1CmgyIDwtIDAuNDUKeSA8LSAzMjAKbXUgPC0gMjUwCmBgYAoKRWxzYSBoYXMgb2JzZXJ2YXRpb25zIGZvciBoZXIgYmlydGggd2VpZ2h0ICgkYHIgZ2ViX2dld2AkIGtnKSBhbmQgc29tZSBtb3JlIHJlcGVhdGVkIG1lYXN1cmVzIGZvciBoZXIgd2VpZ2h0LiBXZSBhc3N1bWUgdGhlIGhlcml0YWJpbGl0eSB0byBiZSAgJGheMiA9IGByIGgyYCQuIFRoZSBwb3B1bGF0aW9uIG1lYW4gZm9yIHRoZSByZXBlYXRlZCBvYnNlcnZhdGlvbnMgb2YgdGhlIHdlaWdodCBpcyAgJGByIG11MmAkIGtnLiBUaGUgcmVwZWF0YWJpbGl0eSBvZiB0aGUgd2VpZ2h0IG1lYXN1cmVtZW50cyBpcyAkdCA9IGByIHJlcGAkLiAKClRoZSBmb2xsb3dpbmcgdGFibGVzIGNvbnRhaW5zIGFsbCBvYnNlcnZlZCB2YWx1ZXMgZm9yIHRoZSB3ZWlnaHQuIAoKYGBge3IgV2VpZ2h0VGFibGUsIGVjaG89RkFMU0V9Cm5yX21lYXN1cmUgPC0gMTAKd2Vhbl93ZWlnaHQgPC0geQpzbG9wZSA8LSAod2Vhbl93ZWlnaHQtZ2ViX2dldykvKG5yX21lYXN1cmUtMSkKbWVhc3VyZSA8LSBjKDE6bnJfbWVhc3VyZSkKd2VpZ2h0IDwtIHJvdW5kKHNsb3BlKihtZWFzdXJlLTEpICsgZ2ViX2dldywgZGlnaXRzID0gMCkKbWVhbl93ZWlnaHQgPC0gbWVhbih3ZWlnaHQpCmRmV2VpZ2h0VGFibGUgPC0gZGF0YS5mcmFtZShNZWFzdXJlbWVudCA9IG1lYXN1cmUsIFdlaWdodCA9IHdlaWdodCkKa25pdHI6OmthYmxlKGRmV2VpZ2h0VGFibGUsIGJvb2t0YWJzID0gVFJVRSwgbG9uZ3RhYmxlID0gVFJVRSkKYGBgCgphKSBQcmVkaWN0IHRoZSBicmVlZGluZyB2YWx1ZSBmb3IgRWxzYSBiYXNlZCBvbiB0aGUgcmVwZWF0ZWQgd2VpZ2h0IHJlY29yZHMuCmIpIFdoYXQgaXMgdGhlIHJlbGlhYmlsaXR5IGZvciB0aGUgcHJlZGljdGVkIGJyZWVkaW5nIHZhbHVlIGZyb20gMmEpPwpjKSBDb21wYXJlIHRoZSByZWxpYWJpbGl0eSBmcm9tIDJiKSB3aXRoIHRoZSByZWxpYWJpbGl0eSB0aGF0IHdvdWxkIHJlc3VsdCBmcm9tIGEgcHJlZGljdGlvbiBvZiBicmVlZGluZyB2YWx1ZXMgYmFzZWQgb24gb3duIHBlcmZvcm1hbmNlLgoKCiMjIyBZb3VyIFNvbHV0aW9uCgpBcyBpbiBQcm9ibGVtIDEsIHlvdSBjYW4gdXNlIHRoZSBhc3NpZ25lZCB2YXJpYWJsZXMuIFRoZSB2YXJpYWJsZXMgaGF2ZSB0aGUgZm9sbG93aW5nIG1lYW5pbmcKCiogbnJfbWVhc3VyZTogICBudW1iZXIgb2YgbWVhc3VyZW1lbnRzIG9mIHRoZSB3ZWlnaHQKKiBoMjogICAgICAgICAgIGhlcml0YWJpbGl0eSAKKiByZXA6ICAgICAgICAgIHJlcGVhdGFiaWxpdHkKKiBtZWFuX3dlaWdodDogIG1lYW4gb2YgdGhlIHdlaWdodHMKKiBtdTI6ICAgICAgICAgIHBvcHVsYXRpb24gbWVhbgoKCgoKCiMjIFByb2JsZW0gMzogUHJlZGljdCBCcmVlZGluZyBWYWx1ZXMgQmFzZWQgb24gUHJvZ2VueSBSZWNvcmRzCgpgYGB7ciBwcm9iMy1kZWYsIGVjaG89RkFMU0V9Cm5fbnJfcHJvZ2VueSA8LSA1CmBgYAoKQSBmZXcgeWVhcnMgbGF0ZXIgRWxzYSB3YXMgdGhlIGRhbSBvZiBgciBuX25yX3Byb2dlbnlgIG9mZnNwcmluZy4gRWFjaCBvZiB0aGUgb2Zmc3ByaW5nIGhhcyBhIHJlY29yZCBmb3Igd2VhbmluZyB3ZWlnaHQuIFByZWRpY3QgdGhlIGJyZWVkaW5nIHZhbHVlIG9mIEVsc2EgZm9yIHdlYW5pbmcgd2VpZ2h0IGJhc2VkIG9uIHRoZSBvZmZwc3JpbmcgcmVjb3JkcyBsaXN0ZWQgaW4gdGhlIGZvbGxvd2luZyB0YWJsZS4KCmBgYHtyIHRhYi1wcm9nLWJ3LCBlY2hvPUZBTFNFfQp2ZWNfd3dfcHJvZyA8LSByb3VuZCh5ICsgcm5vcm0obl9ucl9wcm9nZW55LCBtZWFuID0gMCwgc2QgPSAyKSwgZGlnaXRzID0gMCkKdGJsX3Byb2dfd3cgPC0gdGliYmxlOjp0aWJibGUoT2Zmc3ByaW5nID0gYygxOm5fbnJfcHJvZ2VueSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGBXZWFuaW5nIFdlaWdodGAgPSB2ZWNfd3dfcHJvZykKa25pdHI6OmthYmxlKHRibF9wcm9nX3d3LCBib29rdGFicyA9IFRSVUUsIGxvbmd0YWJsZSA9IFRSVUUpCmBgYAoKVGhlIG1lYW4gYW5kIHRoZSBoZXJpdGFiaWxpdHkgY2FuIGJlIHRha2VuIHRoZSBzYW1lIGFzIGluIFByb2JsZW1zIDEgYW5kIDIgcmVzdWx0aW5nIGluIAoKJGheMiA9IGByIGgyYCQgYW5kICRcbXUgPSBgciBtdWAkCgoKCiMjIyBZb3VyIFNvbHV0aW9uClRoaXMgcHJvYmxlbSBjYW4gYmUgc29sdmVkIGFuYWxvZ291c2x5IHRvIHRoZSBwcmV2aW91cyBwcm9ibGVtcywganVzdCB0YWtpbmcgaW50byBhY2NvdW50IHRoYXQgdGhlIGluZm9ybWF0aW9uIG5vdyBjb21lcyBmcm9tIG9mZnNwcmluZy4KCgoKIAoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK