

Introduction

* Meuwissen et al. (2001): How to use total genotypic values for prediction of breeding values.

* Genotypic values (V_{ij}) for a single locus model: with values G_{1} + or G_{2} + or G_{3} + or G_{4} + or $G_$

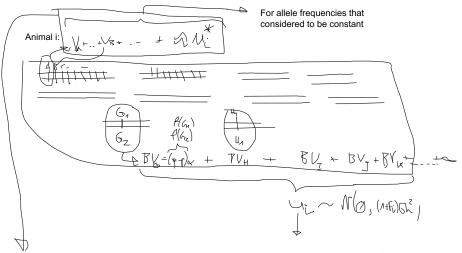
- Proposed in 2001
- Widely adopted in 2007/2008
- Costs of breeding program reduced due to shorter generation intervals
- In cattle: young sire selection versus selection based on sire proofs
- In pigs: early selection among full sibbs
- Inbreeding must be considered

 accurate predictions at very young ages

G1267 - 0

➢ By consequently basing selection decisions on <u>genomics</u><u>breeding values</u>, costs of a cattle breeding program could be reduced by about 90%

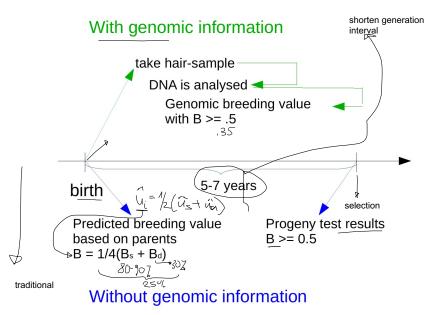
Cattle: As soon as calf is born, a hair sample taken and is sent to the lab and after 2-4 weeks, genomic breeding values are available. Reliabilities range between 30-50%



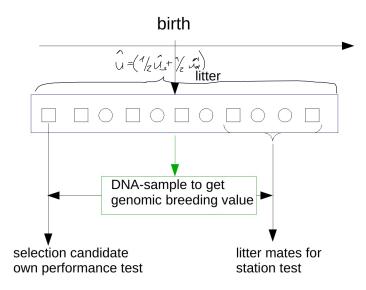
Reason for linear mixed effect models

- Genomic Selection: use of genomic Information for selection decisions
- Genomic Information is used to predict genomic breeding values

Benefits in Cattle

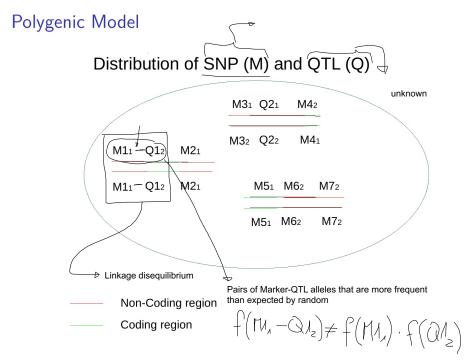


Benefits in Pigs

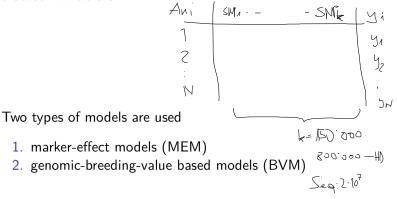


Genetic Model

- ► Recall: BLUP animal model is based on infinitesimal model
- Prediction of genomic breeding values is based on polygenic model
- In polygenic model: Single Nucleotide Polymorphisms (SNP) are used as markers
- Marker genotypes are expected to be associated with genotypes of Quantitative Trait Loci (QTL)



Statistical Models



MFM fixed effect $y_{i} = M + \beta_{1} a_{1} + \beta_{2} a_{2} + \dots + \beta_{k} a_{k} + e_{i}$

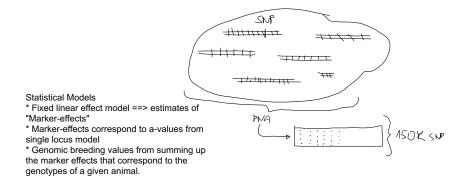
marker effects (a-values) are fitted using

- \blacktriangleright a simple linear model \rightarrow marker effects are fixed
- \blacktriangleright a linear mixed effects model \rightarrow marker effects are random
- Problem of finding which markers are associated to QTL
- With high number of SNP compared to number of genotyped animals: very large systems of equations to solve

Recap 2022-12-09:

* Genomic Selection: Selection process based on predicted breeding values using genomic information

* Genomic (as opposed to genetic) is used when marker information that is used is evenly spread across the whole genome.

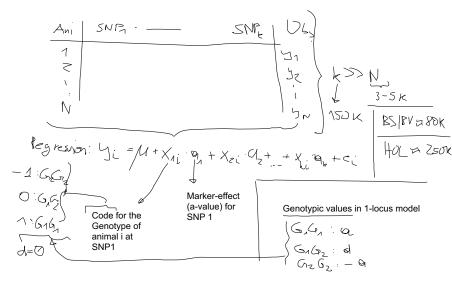


Problem: Too many effects to use least squares in a simple Regression model.

Problem: Too many effects to use least squares in a simple Regression model.

* Already Meuwissen et al. (2001) already realized that problem, they proposed:

> First run a single marker GWAS



Least Squares:

$$\hat{a} = (X^T X)^{-1} X^T y$$

Because, k >> N, the Matrix
$$(X^TX)^{-1}$$
 .

Possible solutions: *Replace least square with LASSO *Use mixed linear effects models with the marker effects as random effects.

$$y = Xeta + Wa + e$$

Solutions are obtaine with MME

Breeding Value based model

* Mixed linear effect model

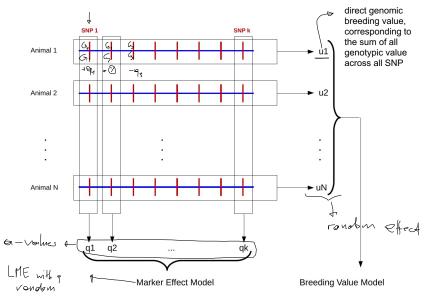
$$y = Xeta + Zg + e^{genomic \ eta V}$$

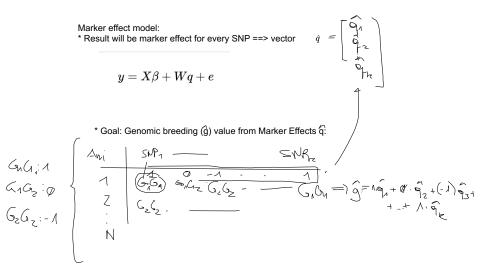
- genomic breeding values as random effects
- similar to animal model
- genomic relationship matrix (G) instead of numerator relationship matrix (A)

Solutions are obtained via MME Traditional BLUP Animal model, vector of breeding values: $u \longrightarrow Var(u) = A \cdot \int_{u}^{2}$ Genomic breeding values: $g \longrightarrow Var(g) = G \cdot \int_{g}^{2}$

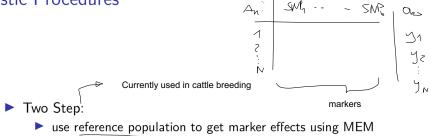
genomic relationship matrix

MEM versus BVM





Logistic Procedures



- use marker effects to get to genomic breeding values
- Single Step
 - MEM or BVM in a single evaluation
 - difficulty how to combine animals with and without genotypes

Two Step in practice:

* Reference population of animals with predicted breeding values using BLUP animal model with a high reliability (> 0.35 - 0.5)

* For animals in the reference population, we have marker information and observations are available

* Since the reference population consists of mostly male animals, the observations are based on deregressed traditional breeding values

* De-regression is the transformation of the variability from the scale of the predicted breeding values back to the scale of phenotypic observations.

* Three times a year (April, August and December) marker effects are estimated using the reference population data.

* For new-born animals, hair samples are sent to the Lab

* DNA is extracted and the genotypes at all marker positions are determined

* The marker genotypes together with marker effects are used to predict direct genomic breeding values, as shown before

* Done every 2 weeks

+ Procedure works well.

+ As a consequence many selection decisions can be taken base on young animals.

+ This allows to shorten the generation interval (from 5-7 years down to 2 years)

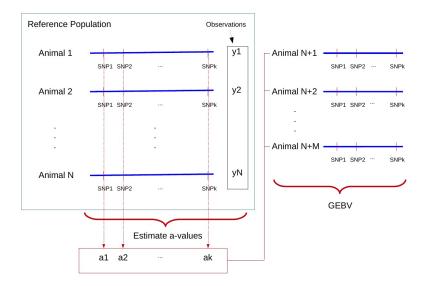
+/- In the long run, not so many bulls are going to be progeny tested anymore ==> reference population does not grow anymore

- animals in reference population are getting older and further away from the current breeding population with a negative effect on the accuracy of marker effects estimates.

- heavily dependent on the reference population.

- As soon as all male animals are genotyped, new data can only come from cow genotypes. But since their reliability is seldom high, they are not considered in the reference population.

Two Step Procedure



Single Step GBLUP BVM

Use a mixed linear effect model

Genomic breeding values g are random effects

$$y = Xb + Zg + e$$

with

Solutions for $\stackrel{\frown}{g}$ will be obtained by Mixed Model Equations

Solution Via Mixed Model Equations

Image: So far: Breeding Value Based Model using a single step procedure is only applied to a population with complete marker information and observations for all animals.

All animals have genotypes and observations

$$\begin{bmatrix} X^T X & X^T Z \\ Z^T X & Z^T Z + \lambda * G^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} X^T y \\ Z^T y \end{bmatrix}$$
with $\lambda = \sigma_e^2 / \sigma_g^2$.

Animals Without Observations

- Young animals do not have observations
- Partition ĝ into
 - \$\heta_1\$ animals with observations and \$\low\$ reference polulation
 \$\heta_2\$ animals without observations \$\low\$ young animals

• Resulting Mixed Model Equations are (assume $\lambda = 1$)

$$\begin{bmatrix} X^T X & X^T Z & 0 \\ Z^T X & Z^T Z + G^{(11)} & G^{(12)} \\ \underline{0} & - & G^{(21)} & - & G^{(22)} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \underline{\hat{g}_1} \\ \underline{\hat{g}_2} \end{bmatrix} = \begin{bmatrix} X^T y \\ Z^T y \\ - & 0 \end{bmatrix}$$

Predicted Genomic Breeding Values

young animals

Last line of Mixed model equations

$$\bigcirc \cdot \widehat{\searrow} + \underline{G^{(21)} \cdot \hat{g}_1} + \underline{G^{(22)} \cdot [\hat{g}_2]} = 0$$

Same

Some partitioning for vector g
$$\int = \begin{bmatrix} 9_{1} \\ 9_{2} \end{bmatrix}$$

$$Vor(9) = Vor(9_{1})$$

$$= \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{12} \end{bmatrix}$$

$$Vor(9_{21}) = G_{11}$$

$$Vor(9_{22}) = G_{12}$$

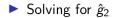
$$\int G_{12} = G_{12}$$

$$\int G_{11} & G_{12} = G_{12}$$

$$\int G_{21} & G_{12} = G_{12}$$

$$\int G_{21} & G_{22} = G_{12}$$

Solutions



$$\hat{g}_2 = -(G^{(22)})^{-1} \cdot G^{(21)} \cdot \hat{g}_1$$

In Summary, so far:

* Direct genomic breeding values based on MEM:

1. estimate Marker effects $==>\hat{q}$

2. Use q together with marker genotypes to get genomic breeding values

==> Two step procedure with an additional advantage: not dependent on genomic relationship

* Breeding value based model in a single step procedure

* Linear mixed effect models to predict directly predict genomic breeding values for animals with and without observations.

* Solutions were obtained from Mixed Model equations which depend on Genomic Relationship Matrix G

==> How to compute G?

Genomic Relationship Matrix

- Breeding value model uses genomic breeding values g as random effects
- Variance-covariance matrix of g are proposed to be proportional to matrix G

$$var(g) = G * \sigma_g^2$$
 genetic variance expalined by all SNP markers

where G is called **genomic relationship matrix** (GRM)

Properties of G

Genotype-code for animal i at SNP position 1, can either be -1, 0 or 1 91 $+ \chi_{2i} + \chi_{ki} +$ vector of marker genomic breeding value for animal i effects genomic breeding values g are linear combinations of g \triangleright g as deviations, that means E(g) = 0• var(g) as product between G and σ_{σ}^2 where G is the genomic relationship matrix G should be similar to A

* diagonally dominant, ==> in general, diagonal elements should be larger than off-diagonal elements

* some degree of sparsity, ==> many off-diagonal elements are close to 0

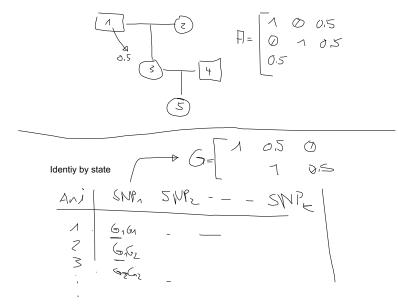
necessary conditions that G is non-singular, that means that an inverse of G exists

Change of Identity Concept

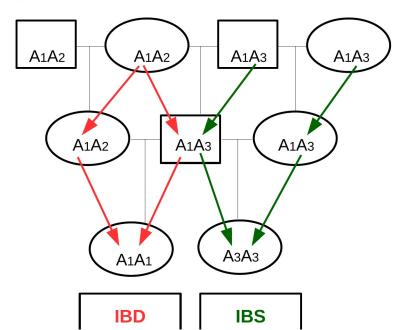
numerator relationship matrix

- \dot{A} is based on identity by descent $|B\rangle$
- ► G is based on identity by state (including ibd), assuming that the same allele has the same effect
- IBS can only be observed with SNP-genotype data

Identiy by descent (IBD): based on common ancestry defined in the pedigree



Identity



Linear Combination

- SNP marker effects (a values) from marker effect model are in vector q
- Genomic breeding values from breeding value model are determined by

$$g = U \cdot q$$

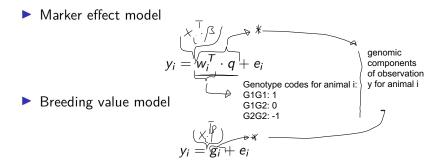
Matrix U is determined by desired properties of g is unknown, question is how should matrix U look like such that desired properties of g are fullfilled.

Deviation

- Genomic breeding values are defined as deviation from a certain basis
- $\rightarrow E(g) = 0$
 - How to determine matrix U such that E(g) = 0

Equivalence Between Models

Decomposition of phenotypic observation y_i with



• g_i and $w_i^T \cdot q$ represent the same genetic effects and should be equivalent in terms of variability

Expected Values

$$\begin{aligned} \Im_{i} &= \left(\begin{matrix} \nabla_{i} \\ \nabla_{i} \end{matrix} \right)^{T} + c \\ \Im_{i} &= \left(\begin{matrix} \Im_{i} \\ \Im_{i} \end{matrix} \right)^{T} + c \end{aligned}$$

Required:
$$E(g_i) = 0$$

Rut: $E(w^T - a) = \begin{bmatrix} a^T \\ a^T \end{bmatrix} = E(w)$

But:
$$E(\underline{w_i} \cdot q) = [q^{-1} \cdot E(w_i)]$$

- Take q as constant SNP effects
- Assume *w_i* to be the random variable with:

$$w_i = \left\{ egin{array}{ccc} 1 & ext{with probability} \ 0 & ext{with probability} \ -1 & ext{with probability} \end{array}
ight.$$

$$\begin{vmatrix} p^2 \\ 2p(1-p) \\ (1-p)^2 \end{vmatrix}$$

 $\rightarrow E(w_i)$: For a single locus

$$E(w_i) = 1 * p^2 + 0 * 2p(1-p) + (-1)(1-p)^2 = p^2 - 1 + 2p - p^2 = 2p - 1 \neq 0$$

Specification of g

$$g_{i} = (w_{i}^{T} - s_{i}^{T}) \cdot q$$
with $s_{i} = E(w_{i}) = 2p - 1$

Resulting in
$$g_{i} = U \cdot q = (W - S) \cdot q = 0$$

$$E(g) = 0$$

with matrix S having columns j with all elements equal to $2p_j - 1$ where p_j is the allele frequency of the SNP allele associated with the positive effect.

Genetic Variance

• Requirement: $var(g) = G * \sigma_g^2$

A---

Result from Gianola et al. (2009):

genetic variance based on genomic breeding values

Variance of marker effects, assumed to be given

$$\sigma_g^2 = \sigma_q^2 * \sum_{j=1}^k (1 - 2p_j(1 - p_j))$$

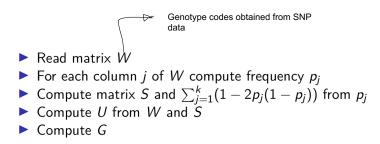
From earlier:
$$g = U \cdot q$$

 $var(g) = var(U \cdot q) = U \cdot var(q) \cdot U^{T} = \underbrace{UU^{T} \sigma_{q}^{2}}_{var(q)}$
Combining
 $var(g) = \int_{a} \int_{b}^{a} \int_{g}^{c} \int_{g}^$

Genomic Relationship Matrix

$$G = \frac{UU^T}{\sum_{j=1}^k (1 - 2p_j(1 - p_j))}$$

How To Compute G



In practice:

- * The computed matrix G is often singular ==> cannot be inverted.
- * G can be approximated by G* = G + 0.01 * I or G* = G + 0.01 * A
- * G* can be inverted and is used in the Mixed model equations.

 BVM is a linear mixed effect model using genomic relationship matrix G. G is computed as shown.