Livestock Breeding and Genomics - Solution 2

Peter von Rohr

2022-09-29

Problem 1: Vectors in R

Vector Definition

Although there exists a function called vector() in R, vectors are always defined in R using the function c() which stands for "concatenation".

Vector Assignment

Let us assume we want to assign the following vector a

$$a = \left[\begin{array}{c} 10\\7\\43 \end{array} \right]$$

to the variable named a in R, then this can be done with the following statement

a <- c(10,7,43)

Access of single Vector Element

A single vector element can be accessed using the variable name followed by the element index in brackets. Hence, if we want to know the first element of vector **a**, we have to write

a[1]

[1] 10

Computations with Vector Elements

Vector elements can be used in arithmetic operations such as summation, subtraction and multiplication as shown below

a[1] + a[3]

[1] 53

a[2] * a[3] ## [1] 301 a[3] - a[1]

[1] 33

The function **sum()** can be used to compute the sum of all vector elements. The function **mean()** computes the mean of all vector elements.

sum(a)			
## [1] 60			
mean(a)			
## [1] 20			

Vector Computations

Arithmetic operations can also be performed not only on elements of vectors but also on complete vectors. Hence, we can add the vector **a** to itself or we can multiply it by a factor of 3.5 which is shown in the following code-chunk

a + a

[1] 20 14 86

3.5 * a

[1] 35.0 24.5 150.5

More Computations on Vectors

Given are the following two vectors v and w.

$$v = \begin{bmatrix} 3\\ -5\\ 1\\ 9 \end{bmatrix}$$
$$w = \begin{bmatrix} 1\\ 9\\ -12\\ 27 \end{bmatrix}$$

Compute

- the sum v + w,
- the difference v w and
- the dot product $v \cdot w$.

Solution

v <- c(3, -5, 1, 9) w <- c(1, 9, -12, 27) Now we do the computations. The sum v + w is v+w ## [1] 4 -11 36 4 The difference v - w is v-v ## [1] 2 -14 13 -18 and the dot-product is crossprod(v,w) ## [,1] ## [1,] 189 or v %*% w ## [,1] ## [1,] 189

Please note: Although the R-function is called crossprod() what is computed is the dot product between the two vectors. The function name crossprod() is used because in Statistics the product $(X^T X)$ of a transposed matrix (X^T) and itself (X) is called a matrix crossproduct. This has nothing to do with the crossproduct $v \times w$ between two vectors v and w.

Problem 2: Matrices in R

Matrices in R are defined using the function matrix(). The function matrix() takes as first arguments all the elements of the matrix as a vector and as further arguments the number of rows and the number of columns. The following statement generates a matrix with 4 rows and 3 columns containing all integer numbers from 1 to 12.

mat_by_col <- matrix(1:12, nrow = 4, ncol = 3)
mat_by_col</pre>

##		[,1]	[,2]	[,3]
##	[1,]	1	5	9
##	[2,]	2	6	10
##	[3,]	3	7	11
##	[4,]	4	8	12

As can be seen, the matrix elements are ordered by columns. Often, we want to define a matrix where elements are filled by rows. This can by done using the option byrow=TRUE

mat_by_row <- matrix(1:12, nrow = 4, ncol = 3, byrow = TRUE)
mat_by_row</pre>

##		[,1]	[,2]	[,3]
##	[1,]	1	2	3
##	[2,]	4	5	6
##	[3,]	7	8	9
##	[4,]	10	11	12

Access of Matrix Elements

Matrix elements can be accessed similarly to what was shown for vectors. But to access a single element, we need two indices, one for rows and one for columns. Hence the matrix element in the second row and third column can be accessed by

mat_by_row[2,3]

[1] 6

Arithmetic Computations with Matrices

Arithmetic computations with matrices can be done with the well-known operators as long as the matrices are compatible. For summation and subtraction matrices must have the same number of rows and columns. For matrix-multiplication, the number of columns of the first matrix must be equal to the number of rows of the second matrix.

In R the arithmetic operators +, - and * all perform element-wise operations. The matrix multiplication can either be done using the operator %% or the function crossprod(). It has to be noted that the statement

crossprod(A, B)

computes the matrix-product $A^T \cdot B$ where A^T stands for the transpose of matrix A. Hence the matrix product $A \cdot B$ would have to be computed as

crossprod(t(A), B)

More Examples

Given the matrices X and Y

X <- matrix(1:15, nrow = 5, ncol = 3) Y <- matrix(16:30, nrow = 5, ncol = 3)

Compute

- X + Y
- Y X
- multiplication of elements between X and Y matrix-product $X^T \cdot Y$ matrix-product $X^T \cdot X$ matrix-product $Y^T \cdot Y$

Solution

X + Y						
## ## [1,] ## [2,] ## [3,] ## [4,] ## [5,]	19 21 23	27 29 31 33	[,3] 37 39 41 43 45			
Y - X						
## ## [1,] ## [2,] ## [3,] ## [4,] ## [5,]	15 15 15 15	15 15 15 15	[,3] 15 15 15 15 15			
X * Y						
## ## [1,] ## [2,] ## [3,] ## [4,] ## [5,]	16 34 54 76	126 154 184	286 324 364 406			
crosspr	od(X,	Y)				
## ## [1,] ## [2,] ## [3,]	730	355 930	430 1130			

[,1] [,2] [,3]
[1,] 55 130 205
[2,] 130 330 530
[3,] 205 530 855
crossprod(Y)

 ##
 [,1]
 [,2]
 [,3]

 ##
 [1,1]
 1630
 2080
 2530

 ##
 [2,2]
 2080
 2655
 3230

 ##
 [3,3]
 2530
 3230
 3930