Problem 1: Genotype and Allele Frequencies
Given the dataset available from:
https://charlotte-ngs.github.io/lbgfs2023/data/lbgfs2023_lbg_ex03.csv
The dataset can be read using the following command
readr::read_delim("https://charlotte-ngs.github.io/lbgfs2023/data/lbgfs2023_lbg_ex03.csv",
delim = ",")
In the above dataset, genotypes are encoded as follows
\(G_2G_2\) |
\(H_2H_2\) |
0 |
\(G_1G_2\) |
\(H_1H_2\) |
1 |
\(G_1G_1\) |
\(H_1H_1\) |
2 |
Your Tasks
- compute genotype frequencies
- compute allele frequencies
Your Solution
- Read the dataset and assign it to a tibble or dataframe
- Compute genotype frequencies using either the function
table()
or a dplyr
pipeline
- From genotype frequencies compute allele frequencies
Problem 2: Check for Hardy-Weinberg Equilibrium
Use the dataset from Problem 1 and check for Hardy-Weinberg
equilibrium at both loci using a \(\chi^2\) test.
Your Solution
- Read the data
- Compute genotype frequencies according to what would be expected
following the Hary-Weinberg equilibrium
- Use the function
chisq.test()
for the doing the
test.
Latest Changes: 2023-09-29 07:27:15 (pvr)
LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gTm90ZWJvb2sgMwphdXRob3I6IFBldGVyIHZvbiBSb2hyCmRhdGU6ICcyMDIzLTA5LTI4JwpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKcGFyYW1zOgogIGRvY3R5cGU6CiAgICBsYWJlbDogRG9jdW1lbnQgVHlwZQogICAgdmFsdWU6IHNvbHV0aW9uCiAgICBjaG9pY2VzOgogICAgLSBleGVyY2lzZQogICAgLSBzb2x1dGlvbgogICAgLSBub3RlYm9vawogIGlzb25saW5lOgogICAgbGFiZWw6IE9ubGluZSAoeS9uKQogICAgdmFsdWU6IHRydWUKICAgIGNob2ljZXM6CiAgICAtIHRydWUKICAgIC0gZmFsc2UKLS0tCgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKCiMjIFByb2JsZW0gMTogR2Vub3R5cGUgYW5kIEFsbGVsZSBGcmVxdWVuY2llcwpgYGB7ciBsYmctZXgwMy1wMDEtc2V0dXAsIGVjaG89RkFMU0V9CnNfbGJnX2V4MDNfcDAxX2RhdGFfdXJsIDwtICJodHRwczovL2NoYXJsb3R0ZS1uZ3MuZ2l0aHViLmlvL2xiZ2ZzMjAyMy9kYXRhL2xiZ2ZzMjAyM19sYmdfZXgwMy5jc3YiCmBgYAoKR2l2ZW4gdGhlIGRhdGFzZXQgYXZhaWxhYmxlIGZyb206CgpgYGB7ciwgZWNobz1GQUxTRX0KY2F0KHNfbGJnX2V4MDNfcDAxX2RhdGFfdXJsLCAiXG4iKQpgYGAKClRoZSBkYXRhc2V0IGNhbiBiZSByZWFkIHVzaW5nIHRoZSBmb2xsb3dpbmcgY29tbWFuZAoKYGBge3IsIGVjaG89RkFMU0UsIHJlc3VsdHM9J2FzaXMnfQpjYXQoImBgYHJcbiIpCmNhdChwYXN0ZTAoInJlYWRyOjpyZWFkX2RlbGltKFwiIiwgCiAgICAgICAgICAgc19sYmdfZXgwM19wMDFfZGF0YV91cmwsIAogICAgICAgICAgICJcIiwgIiwgIlxuIiwgImRlbGltID0gXCIsXCIpIiwgCiAgICAgICAgICAgY29sbGFwc2UgPSAiIiksICJcbiIpCmNhdCgiYGBgXG4iKQpgYGAKCgpJbiB0aGUgYWJvdmUgZGF0YXNldCwgZ2Vub3R5cGVzIGFyZSBlbmNvZGVkIGFzIGZvbGxvd3MKCmBgYHtyLCBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQp0YmxfZ2Vub3R5cGVfY29kZSA8LSB0aWJibGU6OnRpYmJsZSgKICBMb2N1c0cgPSBjKCIkR18yR18yJCIsCiAgIiRHXzFHXzIkIiwKICAiJEdfMUdfMSQiKSwgIAogIExvY3VzSCA9IGMoIiRIXzJIXzIkIiwKICAiJEhfMUhfMiQiLAogICIkSF8xSF8xJCIpLAogIENvZGUgPSBjKDA6MikKKQprbml0cjo6a2FibGUodGJsX2dlbm90eXBlX2NvZGUsIAogICAgICAgICAgICAgYm9va3RhYnMgPSBUUlVFLCAKICAgICAgICAgICAgIGxvbmd0YWJsZSA9IFRSVUUsIAogICAgICAgICAgICAgZXNjYXBlID0gRkFMU0UpCmBgYAoKIyMjIFlvdXIgVGFza3MKCiogY29tcHV0ZSBnZW5vdHlwZSBmcmVxdWVuY2llcwoqIGNvbXB1dGUgYWxsZWxlIGZyZXF1ZW5jaWVzCgojIyMgWW91ciBTb2x1dGlvbgoKKiBSZWFkIHRoZSBkYXRhc2V0IGFuZCBhc3NpZ24gaXQgdG8gYSB0aWJibGUgb3IgZGF0YWZyYW1lCiogQ29tcHV0ZSBnZW5vdHlwZSBmcmVxdWVuY2llcyB1c2luZyBlaXRoZXIgdGhlIGZ1bmN0aW9uIGB0YWJsZSgpYCBvciBhIGBkcGx5cmAgcGlwZWxpbmUKKiBGcm9tIGdlbm90eXBlIGZyZXF1ZW5jaWVzIGNvbXB1dGUgYWxsZWxlIGZyZXF1ZW5jaWVzCgoKCgoKIyMgUHJvYmxlbSAyOiBDaGVjayBmb3IgSGFyZHktV2VpbmJlcmcgRXF1aWxpYnJpdW0KVXNlIHRoZSBkYXRhc2V0IGZyb20gUHJvYmxlbSAxIGFuZCBjaGVjayBmb3IgSGFyZHktV2VpbmJlcmcgZXF1aWxpYnJpdW0gYXQgYm90aCBsb2NpIHVzaW5nIGEgJFxjaGleMiQgdGVzdC4KCgojIyMgWW91ciBTb2x1dGlvbgoKKiBSZWFkIHRoZSBkYXRhCiogQ29tcHV0ZSBnZW5vdHlwZSBmcmVxdWVuY2llcyBhY2NvcmRpbmcgdG8gd2hhdCB3b3VsZCBiZSBleHBlY3RlZCBmb2xsb3dpbmcgdGhlIEhhcnktV2VpbmJlcmcgZXF1aWxpYnJpdW0KKiBVc2UgdGhlIGZ1bmN0aW9uIGBjaGlzcS50ZXN0KClgIGZvciB0aGUgZG9pbmcgdGhlIHRlc3QuCgoKCgoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK