Problem 1: Parent Offspring Breeding Values
As shown in the course notes, the breeding value \(u_i\) of animal \(i\) can be decomposed into the average of
the parent breeding values plus a mendelian sampling term (\(m_i\)). This means
\[u_i = {1\over 2}u_s + {1\over 2}u_d +
m_i\]
where animal \(i\) has parents \(s\) and \(d\). The mendelian sampling term \(m_i\) is the deviation of the single
breeding value \(u_i\) from the parent
average breeding value. Because \(m_i\)
is modelled as a deviation, it follows that for a large number (\(N\)) of offspring from parents \(s\) and \(d\), the average over all mendelian
sampling terms must be \(0\).
Your Task
Show that the average mendelian sampling term over a large number of
offspring is \(0\) using a single locus
model for the following cases.
Case 1: Homozygous and Heterozygous Parents
Parent \(s\) with genotype \(G_1G_1\) and parent \(d\) with genotype \(G_1G_2\)
Case 2: Homozygous and Heterozygous Parents
Parent \(s\) with genotype \(G_2G_2\) and parent \(d\) with genotype \(G_1G_2\)
Case 3: Heterozygous Parents
Both parents \(s\) and \(d\) have genotype \(G_1G_2\)
Your Solution
- For each of the following cases compute the parent average of
breeding values.
- Compute the difference between the breeding values of every possible
offspring and the parent average
- Compute the average over all mendelian sampling terms
Case 1: Homozygous and Heterozygous Parents
Case 2: Homozygous and Heterozygous Parents
Case 3: Heterozygous Parents
Latest Changes: 2023-11-10 07:36:54 (pvr)
LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gTm90ZWJvb2sgNgphdXRob3I6IFBldGVyIHZvbiBSb2hyCmRhdGU6ICcyMDIzLTEwLTIwJwpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKcGFyYW1zOgogIGRvY3R5cGU6CiAgICBsYWJlbDogRG9jdW1lbnQgVHlwZQogICAgdmFsdWU6IHNvbHV0aW9uCiAgICBjaG9pY2VzOgogICAgLSBleGVyY2lzZQogICAgLSBzb2x1dGlvbgogICAgLSBub3RlYm9vawogIGlzb25saW5lOgogICAgbGFiZWw6IE9ubGluZSAoeS9uKQogICAgdmFsdWU6IHRydWUKICAgIGNob2ljZXM6CiAgICAtIHRydWUKICAgIC0gZmFsc2UKLS0tCgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKCiMjIFByb2JsZW0gMTogUGFyZW50IE9mZnNwcmluZyBCcmVlZGluZyBWYWx1ZXMKQXMgc2hvd24gaW4gdGhlIGNvdXJzZSBub3RlcywgdGhlIGJyZWVkaW5nIHZhbHVlICR1X2kkIG9mIGFuaW1hbCAkaSQgY2FuIGJlIGRlY29tcG9zZWQgaW50byB0aGUgYXZlcmFnZSBvZiB0aGUgcGFyZW50IGJyZWVkaW5nIHZhbHVlcyBwbHVzIGEgbWVuZGVsaWFuIHNhbXBsaW5nIHRlcm0gKCRtX2kkKS4gVGhpcyBtZWFucwoKJCR1X2kgPSB7MVxvdmVyIDJ9dV9zICsgezFcb3ZlciAyfXVfZCArIG1faSQkCgp3aGVyZSBhbmltYWwgJGkkIGhhcyBwYXJlbnRzICRzJCBhbmQgJGQkLiBUaGUgbWVuZGVsaWFuIHNhbXBsaW5nIHRlcm0gJG1faSQgaXMgdGhlIGRldmlhdGlvbiBvZiB0aGUgc2luZ2xlIGJyZWVkaW5nIHZhbHVlICR1X2kkIGZyb20gdGhlIHBhcmVudCBhdmVyYWdlIGJyZWVkaW5nIHZhbHVlLiBCZWNhdXNlICRtX2kkIGlzIG1vZGVsbGVkIGFzIGEgZGV2aWF0aW9uLCBpdCBmb2xsb3dzIHRoYXQgZm9yIGEgbGFyZ2UgbnVtYmVyICgkTiQpIG9mIG9mZnNwcmluZyBmcm9tIHBhcmVudHMgJHMkIGFuZCAkZCQsIHRoZSBhdmVyYWdlIG92ZXIgYWxsIG1lbmRlbGlhbiBzYW1wbGluZyB0ZXJtcyBtdXN0IGJlICQwJC4gCgojIyMgWW91ciBUYXNrClNob3cgdGhhdCB0aGUgYXZlcmFnZSBtZW5kZWxpYW4gc2FtcGxpbmcgdGVybSBvdmVyIGEgbGFyZ2UgbnVtYmVyIG9mIG9mZnNwcmluZyBpcyAkMCQgdXNpbmcgYSBzaW5nbGUgbG9jdXMgbW9kZWwgZm9yIHRoZSBmb2xsb3dpbmcgY2FzZXMuCgojIyMjIENhc2UgMTogSG9tb3p5Z291cyBhbmQgSGV0ZXJvenlnb3VzIFBhcmVudHMKUGFyZW50ICRzJCB3aXRoIGdlbm90eXBlICRHXzFHXzEkIGFuZCBwYXJlbnQgJGQkIHdpdGggZ2Vub3R5cGUgJEdfMUdfMiQKCgojIyMjIENhc2UgMjogSG9tb3p5Z291cyBhbmQgSGV0ZXJvenlnb3VzIFBhcmVudHMKUGFyZW50ICRzJCB3aXRoIGdlbm90eXBlICRHXzJHXzIkIGFuZCBwYXJlbnQgJGQkIHdpdGggZ2Vub3R5cGUgJEdfMUdfMiQKCgojIyMjIENhc2UgMzogSGV0ZXJvenlnb3VzIFBhcmVudHMKQm90aCBwYXJlbnRzICRzJCBhbmQgJGQkIGhhdmUgZ2Vub3R5cGUgJEdfMUdfMiQKCiMjIyBZb3VyIFNvbHV0aW9uCiogRm9yIGVhY2ggb2YgdGhlIGZvbGxvd2luZyBjYXNlcyBjb21wdXRlIHRoZSBwYXJlbnQgYXZlcmFnZSBvZiBicmVlZGluZyB2YWx1ZXMuIAoqIENvbXB1dGUgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgYnJlZWRpbmcgdmFsdWVzIG9mIGV2ZXJ5IHBvc3NpYmxlIG9mZnNwcmluZyBhbmQgdGhlIHBhcmVudCBhdmVyYWdlCiogQ29tcHV0ZSB0aGUgYXZlcmFnZSBvdmVyIGFsbCBtZW5kZWxpYW4gc2FtcGxpbmcgdGVybXMKCiMjIyMgQ2FzZSAxOiBIb21venlnb3VzIGFuZCBIZXRlcm96eWdvdXMgUGFyZW50cwoKIyMjIyBDYXNlIDI6IEhvbW96eWdvdXMgYW5kIEhldGVyb3p5Z291cyBQYXJlbnRzCgojIyMjIENhc2UgMzogSGV0ZXJvenlnb3VzIFBhcmVudHMKCgoKCgoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK