Problem 1: Regression Model
Use the dataset on weaning weight and fit a regression model of
weaning weight on breast circumference. The following tasks are to be
completed.
- Use matrix-vector notation to specify the model and fill the
information from the dataset into the model.
- Compute the solution for the estimated regression coefficient using
a least squares approach.
- Use R to verify your result.
The data set is available from
https://charlotte-ngs.github.io/lbgfs2023/data/beef_data_bc.csv
Your Solution
- Regression model in matrix-vector notation: define the vectors and
matrices required in the model
- Read the data into a tibble/data_frame
- Put information from dataset into the model
- Compute solution for regression coefficient estimate
- Use R to verify
Problem 2: Fixed Linear Effects Model
Use the same dataset as in Problem 1 and fit a fixed linear effects
model using breast circumference and herd as fixed effects in a model.
Use the same path to get to the solution as in Problem 1 and complete
the same set of tasks.
Your Solution
Latest Changes: 2023-11-03 05:21:58 (pvr)
LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gTm90ZWJvb2sgOAphdXRob3I6IFBldGVyIHZvbiBSb2hyCmRhdGU6ICcyMDIzLTExLTAzJwpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKcGFyYW1zOgogIGRvY3R5cGU6CiAgICBsYWJlbDogRG9jdW1lbnQgVHlwZQogICAgdmFsdWU6IHNvbHV0aW9uCiAgICBjaG9pY2VzOgogICAgLSBleGVyY2lzZQogICAgLSBzb2x1dGlvbgogICAgLSBub3RlYm9vawogIGlzb25saW5lOgogICAgbGFiZWw6IE9ubGluZSAoeS9uKQogICAgdmFsdWU6IHRydWUKICAgIGNob2ljZXM6CiAgICAtIHRydWUKICAgIC0gZmFsc2UKLS0tCgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKCiMjIFByb2JsZW0gMTogUmVncmVzc2lvbiBNb2RlbApgYGB7ciBsMDZwcm9iMDEtc2V0dXAsIGVjaG89RkFMU0V9CmlmIChwYXJhbXMkaXNvbmxpbmUpewogIHNfZGF0YV9wYXRoIDwtICJodHRwczovL2NoYXJsb3R0ZS1uZ3MuZ2l0aHViLmlvL2xiZ2ZzMjAyMy9kYXRhL2JlZWZfZGF0YV9iYy5jc3YiCn0gZWxzZSB7CiAgc19kYXRhX3BhdGggPC0gZmlsZS5wYXRoKGhlcmU6OmhlcmUoKSwgImRvY3MiLCAiZGF0YSIsICJiZWVmX2RhdGFfYmMuY3N2IikKfQpgYGAKClVzZSB0aGUgZGF0YXNldCBvbiB3ZWFuaW5nIHdlaWdodCBhbmQgZml0IGEgcmVncmVzc2lvbiBtb2RlbCBvZiB3ZWFuaW5nIHdlaWdodCBvbiBicmVhc3QgY2lyY3VtZmVyZW5jZS4gVGhlIGZvbGxvd2luZyB0YXNrcyBhcmUgdG8gYmUgY29tcGxldGVkLgoKKiBVc2UgbWF0cml4LXZlY3RvciBub3RhdGlvbiB0byBzcGVjaWZ5IHRoZSBtb2RlbCBhbmQgZmlsbCB0aGUgaW5mb3JtYXRpb24gZnJvbSB0aGUgZGF0YXNldCBpbnRvIHRoZSBtb2RlbC4gCiogQ29tcHV0ZSB0aGUgc29sdXRpb24gZm9yIHRoZSBlc3RpbWF0ZWQgcmVncmVzc2lvbiBjb2VmZmljaWVudCB1c2luZyBhIGxlYXN0IHNxdWFyZXMgYXBwcm9hY2guIAoqIFVzZSBSIHRvIHZlcmlmeSB5b3VyIHJlc3VsdC4KClRoZSBkYXRhIHNldCBpcyBhdmFpbGFibGUgZnJvbQoKYGBge3IsIGVjaG89RkFMU0V9CmNhdChzX2RhdGFfcGF0aCwgIlxuIikKYGBgCgoKIyMjIFlvdXIgU29sdXRpb24KCiogUmVncmVzc2lvbiBtb2RlbCBpbiBtYXRyaXgtdmVjdG9yIG5vdGF0aW9uOiBkZWZpbmUgdGhlIHZlY3RvcnMgYW5kIG1hdHJpY2VzIHJlcXVpcmVkIGluIHRoZSBtb2RlbAoqIFJlYWQgdGhlIGRhdGEgaW50byBhIHRpYmJsZS9kYXRhX2ZyYW1lCiogUHV0IGluZm9ybWF0aW9uIGZyb20gZGF0YXNldCBpbnRvIHRoZSBtb2RlbAoqIENvbXB1dGUgc29sdXRpb24gZm9yIHJlZ3Jlc3Npb24gY29lZmZpY2llbnQgZXN0aW1hdGUKKiBVc2UgUiB0byB2ZXJpZnkKCgoKCgojIyBQcm9ibGVtIDI6IEZpeGVkIExpbmVhciBFZmZlY3RzIE1vZGVsClVzZSB0aGUgc2FtZSBkYXRhc2V0IGFzIGluIFByb2JsZW0gMSBhbmQgZml0IGEgZml4ZWQgbGluZWFyIGVmZmVjdHMgbW9kZWwgdXNpbmcgYnJlYXN0IGNpcmN1bWZlcmVuY2UgYW5kIGhlcmQgYXMgZml4ZWQgZWZmZWN0cyBpbiBhIG1vZGVsLiBVc2UgdGhlIHNhbWUgcGF0aCB0byBnZXQgdG8gdGhlIHNvbHV0aW9uIGFzIGluIFByb2JsZW0gMSBhbmQgY29tcGxldGUgdGhlIHNhbWUgc2V0IG9mIHRhc2tzLgoKCiMjIyBZb3VyIFNvbHV0aW9uCgoKCgoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK