Problem 1: Inbreeding Coefficient
Because of very low amounts of harvested corn and grains at the end
of the \(18^{th}\) century in central
Europe, many farmers were forced to leave their contry and find a new
home in the USA. In 1810 a group of farmers took a population of about
200 animals and moved to the US. After the arrival, the group formed 4
subgroups and settled in the states of Wisconsin, Virginia, Texas and
California. The animals were equally partitioned to the subgroups. After
the partion into the subpopulations, the animals were bred independently
in the four different lines. In 1960, semen from bulls of the
partitioned subpopulations was re-imported to Europe.
Assumptions
- Although, cattle does not follow the same mode of inheritance as the
organism shown in the lecture, the computations as shown in the lecture
can be used as an approximation.
- The ratio of the number of female animals to the total population
size can be assumed to be \(0.5\).
- In contrast to the size \(N\) of
the subpopulations that was assumed to be the number of individuals,
here \(N\) is the number of female
animals in a given subpopulation.
- The generation interval can be assumed to be 10 years.
Your Task:
- Compute the inbreeding coefficient \(F_t\) for the bulls from which semen was
re-imported back into Europe.
Your Solution
Use the formulas given in the script and the input given in the
problem to compute the inbreeding coefficient.
Problem 2: Inbreeding Depression
Use the same assumptions as in Problem 1 and compute the inbreeding
depression caused by the inbreeding coefficient computed in Problem 1 at
two different genetic loci.
- Locus \(A\) is purely additive with
a genotypic value of \(a=25\). Hence
the genotypic value of the heterozygous genotype is in the middle
between the values of the two homozygous genotypes. In other words, the
quantity \(d = 0\). The minor allele
frequency (MAF) of the positive allele of locus \(A\) is \(p =
0.1\)
- Locus \(B\) where the valud of the
heterozygous genotypes \(B_1B_2\) is
\(10\) units above the mean of the
homozygous genotypes, hence you can set the quantity \(d=10\). The minor allele frequency of the
positive allele of locus \(B\) is \(p = 0.05\).
Your Solution
- Inbreeding depression was presented during the lecture
- Compute the inbreeding depression for the two scenarios in a) and
b)
Problem 3: Genetic additive Variance
Compute the between-line, the within-line and the total genetic
variance for the population described in Problem 1 and the locus \(A\) of Problem 2a.
Your Solution
Compute the two variance components as given in the lecture which
are
- between-line
- within-line
From both components get the total genetic variance
Latest Changes: 2023-11-24 16:21:11 (pvr)
LS0tCnRpdGxlOiBMaXZlc3RvY2sgQnJlZWRpbmcgYW5kIEdlbm9taWNzIC0gTm90ZWJvb2sgMTEKYXV0aG9yOiBQZXRlciB2b24gUm9ocgpkYXRlOiAnMjAyMy0xMS0yNCcKb3V0cHV0OiBodG1sX25vdGVib29rCnBhcmFtczoKICBkb2N0eXBlOgogICAgbGFiZWw6IERvY3VtZW50IFR5cGUKICAgIHZhbHVlOiBzb2x1dGlvbgogICAgY2hvaWNlczoKICAgIC0gZXhlcmNpc2UKICAgIC0gc29sdXRpb24KICAgIC0gbm90ZWJvb2sKICBpc29ubGluZToKICAgIGxhYmVsOiBPbmxpbmUgKHkvbikKICAgIHZhbHVlOiB0cnVlCiAgICBjaG9pY2VzOgogICAgLSB0cnVlCiAgICAtIGZhbHNlCi0tLQoKCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCgojIyBQcm9ibGVtIDE6IEluYnJlZWRpbmcgQ29lZmZpY2llbnQKYGBge3IgcHJvYjEtc2V0dXAsIGVjaG89RkFMU0V9Cm5fcG9wX3NpemUgPC0gMjAwCm5fbGluZSA8LSA0Cm5feWVhcl9lbWlncmF0aW9uIDwtIDE4MTAKbl95ZWFyX3NlbWVuX2ltcG9ydCA8LSAxOTYwCm5fc2V4X3JhdGlvIDwtIDAuNQpuX2dlbmVyYXRpb25faW50ZXJ2YWwgPC0gMTAKYGBgCgpCZWNhdXNlIG9mIHZlcnkgbG93IGFtb3VudHMgb2YgaGFydmVzdGVkIGNvcm4gYW5kIGdyYWlucyBhdCB0aGUgZW5kIG9mIHRoZSAkMThee3RofSQgY2VudHVyeSBpbiBjZW50cmFsIEV1cm9wZSwgbWFueSBmYXJtZXJzIHdlcmUgZm9yY2VkIHRvIGxlYXZlIHRoZWlyIGNvbnRyeSBhbmQgZmluZCBhIG5ldyBob21lIGluIHRoZSBVU0EuIEluIGByIG5feWVhcl9lbWlncmF0aW9uYCBhIGdyb3VwIG9mIGZhcm1lcnMgdG9vayBhIHBvcHVsYXRpb24gb2YgYWJvdXQgYHIgbl9wb3Bfc2l6ZWAgYW5pbWFscyBhbmQgbW92ZWQgdG8gdGhlIFVTLiAgQWZ0ZXIgdGhlIGFycml2YWwsIHRoZSBncm91cCBmb3JtZWQgYHIgbl9saW5lYCBzdWJncm91cHMgYW5kIHNldHRsZWQgaW4gdGhlIHN0YXRlcyBvZiBXaXNjb25zaW4sIFZpcmdpbmlhLCBUZXhhcyBhbmQgQ2FsaWZvcm5pYS4gVGhlIGFuaW1hbHMgd2VyZSBlcXVhbGx5IHBhcnRpdGlvbmVkIHRvIHRoZSBzdWJncm91cHMuIEFmdGVyIHRoZSBwYXJ0aW9uIGludG8gdGhlIHN1YnBvcHVsYXRpb25zLCB0aGUgYW5pbWFscyB3ZXJlIGJyZWQgaW5kZXBlbmRlbnRseSBpbiB0aGUgZm91ciBkaWZmZXJlbnQgbGluZXMuIEluIGByIG5feWVhcl9zZW1lbl9pbXBvcnRgLCBzZW1lbiBmcm9tIGJ1bGxzIG9mIHRoZSBwYXJ0aXRpb25lZCBzdWJwb3B1bGF0aW9ucyB3YXMgcmUtaW1wb3J0ZWQgdG8gRXVyb3BlLiAKCiMjIEFzc3VtcHRpb25zCiogQWx0aG91Z2gsIGNhdHRsZSBkb2VzIG5vdCBmb2xsb3cgdGhlIHNhbWUgbW9kZSBvZiBpbmhlcml0YW5jZSBhcyB0aGUgb3JnYW5pc20gc2hvd24gaW4gdGhlIGxlY3R1cmUsIHRoZSBjb21wdXRhdGlvbnMgYXMgc2hvd24gaW4gdGhlIGxlY3R1cmUgY2FuIGJlIHVzZWQgYXMgYW4gYXBwcm94aW1hdGlvbi4gCiogVGhlIHJhdGlvIG9mIHRoZSBudW1iZXIgb2YgZmVtYWxlIGFuaW1hbHMgdG8gdGhlIHRvdGFsIHBvcHVsYXRpb24gc2l6ZSBjYW4gYmUgYXNzdW1lZCB0byBiZSAkYHIgbl9zZXhfcmF0aW9gJC4KKiBJbiBjb250cmFzdCB0byB0aGUgc2l6ZSAkTiQgb2YgdGhlIHN1YnBvcHVsYXRpb25zIHRoYXQgd2FzIGFzc3VtZWQgdG8gYmUgdGhlIG51bWJlciBvZiBpbmRpdmlkdWFscywgaGVyZSAkTiQgaXMgdGhlIG51bWJlciBvZiBmZW1hbGUgYW5pbWFscyBpbiBhIGdpdmVuIHN1YnBvcHVsYXRpb24uCiogVGhlIGdlbmVyYXRpb24gaW50ZXJ2YWwgY2FuIGJlIGFzc3VtZWQgdG8gYmUgYHIgbl9nZW5lcmF0aW9uX2ludGVydmFsYCB5ZWFycy4KCiMjIyBZb3VyIFRhc2s6CgoqIENvbXB1dGUgdGhlIGluYnJlZWRpbmcgY29lZmZpY2llbnQgJEZfdCQgZm9yIHRoZSBidWxscyBmcm9tIHdoaWNoIHNlbWVuIHdhcyByZS1pbXBvcnRlZCBiYWNrIGludG8gRXVyb3BlLiAKCgoKIyMjIFlvdXIgU29sdXRpb24KClVzZSB0aGUgZm9ybXVsYXMgZ2l2ZW4gaW4gdGhlIHNjcmlwdCBhbmQgdGhlIGlucHV0IGdpdmVuIGluIHRoZSBwcm9ibGVtIHRvIGNvbXB1dGUgdGhlIGluYnJlZWRpbmcgY29lZmZpY2llbnQuCgoKCgoKIyMgUHJvYmxlbSAyOiBJbmJyZWVkaW5nIERlcHJlc3Npb24KYGBge3IgZXgwOXAwMi1zZXR1cCwgZWNobz1GQUxTRX0Kbl9ob21fdmFsdWUgPC0gMjUKbl9tYWZfbG9jdXNfYSA8LSAuMQpuX2RpZmZfaGV0IDwtIDEwCm5fbWFmIDwtIC4wNQpgYGAKClVzZSB0aGUgc2FtZSBhc3N1bXB0aW9ucyBhcyBpbiBQcm9ibGVtIDEgYW5kIGNvbXB1dGUgdGhlIGluYnJlZWRpbmcgZGVwcmVzc2lvbiBjYXVzZWQgYnkgdGhlIGluYnJlZWRpbmcgY29lZmZpY2llbnQgY29tcHV0ZWQgaW4gUHJvYmxlbSAxIGF0IHR3byBkaWZmZXJlbnQgZ2VuZXRpYyBsb2NpLgoKYS4gTG9jdXMgJEEkIGlzIHB1cmVseSBhZGRpdGl2ZSB3aXRoIGEgZ2Vub3R5cGljIHZhbHVlIG9mICRhPWByIG5faG9tX3ZhbHVlYCQuIEhlbmNlIHRoZSBnZW5vdHlwaWMgdmFsdWUgb2YgdGhlIGhldGVyb3p5Z291cyBnZW5vdHlwZSBpcyBpbiB0aGUgbWlkZGxlIGJldHdlZW4gdGhlIHZhbHVlcyBvZiB0aGUgdHdvIGhvbW96eWdvdXMgZ2Vub3R5cGVzLiBJbiBvdGhlciB3b3JkcywgdGhlIHF1YW50aXR5ICRkID0gMCQuIFRoZSBtaW5vciBhbGxlbGUgZnJlcXVlbmN5IChNQUYpIG9mIHRoZSBwb3NpdGl2ZSBhbGxlbGUgb2YgbG9jdXMgJEEkIGlzICRwID0gYHIgbl9tYWZfbG9jdXNfYWAkCmIuIExvY3VzICRCJCB3aGVyZSB0aGUgdmFsdWQgb2YgdGhlIGhldGVyb3p5Z291cyBnZW5vdHlwZXMgJEJfMUJfMiQgaXMgJDEwJCB1bml0cyBhYm92ZSB0aGUgbWVhbiBvZiB0aGUgaG9tb3p5Z291cyBnZW5vdHlwZXMsIGhlbmNlIHlvdSBjYW4gc2V0IHRoZSBxdWFudGl0eSAkZD0xMCQuIFRoZSBtaW5vciBhbGxlbGUgZnJlcXVlbmN5IG9mIHRoZSBwb3NpdGl2ZSBhbGxlbGUgb2YgbG9jdXMgJEIkIGlzICRwID0gYHIgbl9tYWZgJC4gCgoKIyMjIFlvdXIgU29sdXRpb24KCiogSW5icmVlZGluZyBkZXByZXNzaW9uIHdhcyBwcmVzZW50ZWQgZHVyaW5nIHRoZSBsZWN0dXJlCiogQ29tcHV0ZSB0aGUgaW5icmVlZGluZyBkZXByZXNzaW9uIGZvciB0aGUgdHdvIHNjZW5hcmlvcyBpbiBhKSBhbmQgYikKCgoKCgojIyBQcm9ibGVtIDM6IEdlbmV0aWMgYWRkaXRpdmUgVmFyaWFuY2UKQ29tcHV0ZSB0aGUgYmV0d2Vlbi1saW5lLCB0aGUgd2l0aGluLWxpbmUgYW5kIHRoZSB0b3RhbCBnZW5ldGljIHZhcmlhbmNlIGZvciB0aGUgcG9wdWxhdGlvbiBkZXNjcmliZWQgaW4gUHJvYmxlbSAxIGFuZCB0aGUgbG9jdXMgJEEkIG9mIFByb2JsZW0gMmEuIAoKCiMjIyBZb3VyIFNvbHV0aW9uCgpDb21wdXRlIHRoZSB0d28gdmFyaWFuY2UgY29tcG9uZW50cyBhcyBnaXZlbiBpbiB0aGUgbGVjdHVyZSB3aGljaCBhcmUgCgoxLiBiZXR3ZWVuLWxpbmUKMi4gd2l0aGluLWxpbmUKCkZyb20gYm90aCBjb21wb25lbnRzIGdldCB0aGUgdG90YWwgZ2VuZXRpYyB2YXJpYW5jZQoKCgogCgoKYGBge3IsIGVjaG89RkFMU0UsIHJlc3VsdHM9J2FzaXMnfQpjYXQoJ1xuLS0tXG5cbiBfTGF0ZXN0IENoYW5nZXM6ICcsIGZvcm1hdChTeXMudGltZSgpLCAnJVktJW0tJWQgJUg6JU06JVMnKSwgJyAoJywgU3lzLmluZm8oKVsndXNlciddLCAnKV9cbicsIHNlcCA9ICcnKQpgYGAKIAo=